
ABSTRACT

Title of dissertation: MEASUREMENT OF THE W BOSON
MASS AND WIDTH USING A NOVEL
RECOIL MODEL

Matthew J Wetstein
Doctor of Philosophy, 2008

Dissertation directed by: Professor Sarah C. Eno
Department of Physics

This dissertation presents a direct measurement of the W boson mass (MW ) and decay

width (ΓW ) in 1 fb−1 of W → eν collider data at DØ using a novel method to model the hadronic

recoil. The mass is extracted from fits to the transverse mass MT, pt(e), and "ET distributions. The

width is extracted from fits to the tail of the MT distribution. The electron energy measurement

is simulated using a parameterized model, and the recoil is modeled using a new technique by

which Z recoils are chosen from a data library to match the pT and direction of each generated

W boson. We measure the the W boson mass to be MW = 80.4035 ± 0.024(stat) ± 0.038(syst)

from the MT, MW = 80.4165 ± 0.027(stat) ± 0.040(syst) from the pT(e), and MW = 80.4025 ±

0.023(stat) ± 0.044(syst) from the "ET distributions. ΓW is measured to be (blinded) ΓW =

2.2736 ± 0.038(stat) ± 0.062(syst) GeV.



MEASUREMENT OF THE W BOSON MASS AND WIDTH
USING A NOVEL RECOIL MODEL

by

Matthew J Wetstein

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Sarah C. Eno, Chair/Advisor
Professor Nick Hadley
Professor Hassan Jawahery
Associate Professor Kaustaub Agashe
Professor William McDonough



TABLE OF CONTENTS

List of Figures vii

List of Abbreviations xiv

1 Introduction 1

2 Review of Theoretical Particle Physics 3
2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Production and Decay of the W and Z Boson . . . . . . . . . . . . . . . . . . . . . 7
2.3 The W boson Mass and Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Measurement Strategy 16
3.1 Kinematics and Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Template Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 MC Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Basic Fit Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Blinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Experimental Setup 24
4.1 The FermiLab Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 The DØ Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Tracking System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 The Silicon Microstrip Tracker . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 The Central Fiber Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.4 Preshower Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.5 Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.6 Calorimeter Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.7 Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.8 Luminosity Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Optimizing the RunII Detector 39
5.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Intercalibration In φ Using Generic Collider Data . . . . . . . . . . . . . . . 41
5.1.2 Absolute Calibration of Rings in η Using Z → ee data . . . . . . . . . . . . 42
5.1.3 Result of Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Energy Loss Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Material Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Event Selection 57
6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Track and Vertex Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 EM Reconstruction and Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . 58
6.5 "ET Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.6 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.7 Offline Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ii



7 Electron Measurement and Simulation 63
7.1 Electron Energy Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.1 Parameterized Energy Response . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1.2 Parameterized Energy Resolution . . . . . . . . . . . . . . . . . . . . . . . . 64
7.1.3 Underlying Energy Corrections . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Electron Position Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 φ-mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Final State Photon Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5 Primary Vertex Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.6 Luminosity and Run Number Simulation . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Efficiencies 77
8.1 Trigger Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 Preselection Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3 Track Matching Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.4 EMID (Hmatrix) Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.5 φmod Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.6 u|| Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.7 SET Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.8 Overall Tag-and-Probe Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 Recoil Measurement and Simulation 87
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 Recoil Library Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.2.2 Removing Z Boson Decay Electrons . . . . . . . . . . . . . . . . . . . . . . 88
9.2.3 Minimizing the Effects of FSR Photons . . . . . . . . . . . . . . . . . . . . 89
9.2.4 Correcting for Selection Efficiencies . . . . . . . . . . . . . . . . . . . . . . . 89

9.3 Bayseian Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.3.1 Multidimensional Unfolding Using Bayes Theorem . . . . . . . . . . . . . . 91
9.3.2 Unfolding the Recoil Distribution . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4 A Brief Description of the Parameterized Recoil Model . . . . . . . . . . . . . . . . 101
9.5 Biases and Uncertainties Particular to the Recoil Library Method . . . . . . . . . . 101

9.5.1 Fast MC Closure and Limited Statistical Power of the Z Recoil Sample . . 101
9.5.2 Systematic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.5.3 Total Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10 Backgrounds 109
10.1 Fake Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.2 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.2.1 Z → ee background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.2.2 W → τν Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.2.3 QCD Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.2.4 Final Background Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 111

11 Full Monte Carlo Closure Tests 114

12 Systematic Uncertainties 118
12.1 Theoretical Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12.1.1 PDF Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.1.2 Boson pT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12.1.3 QED Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

12.2 Experimental Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.2.1 Electron Energy Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.2.2 Electron Energy Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

iii



12.2.3 Non-Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.2.4 Hadronic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.2.5 Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.2.6 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

12.3 Summary of Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 122

13 Results 125
13.1 Final Result for the W Boson Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.2 Cross-Checks and Comparison Plots for MW . . . . . . . . . . . . . . . . . . . . . 125
13.3 Final Result for the W Boson Decay Width . . . . . . . . . . . . . . . . . . . . . . 136
13.4 Cross-Checks and Comparison Plots for ΓW . . . . . . . . . . . . . . . . . . . . . . 136

14 Conclusions and Future Prospects 145

A Propagating the Effects of FSR in the Recoil File to W → eν Templates 149

B Statistical Power and the Continuity Assumption 152

C DØ Author List 163

Bibliography 166

iv



LIST OF FIGURES

2.1 The particles of the Standard Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Allowed interactions in the Standard Model. . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Basic production and leptonic decay for W/Z bosons with radiated gluons. . . . . 7

2.4 First-order production diagrams for the W and Z boson. . . . . . . . . . . . . . . . 8

2.5 Momentum fractions carried by partons in a proton at Q2 = 102 GeV. . . . . . . . 9

2.6 Compton scattering in Z and W boson production. . . . . . . . . . . . . . . . . . . 10

2.7 Initial-state gluon radiation in Z and W boson production. . . . . . . . . . . . . . 11

2.8 Known decay channels for the W and Z boson. . . . . . . . . . . . . . . . . . . . . 12

2.9 Higher order correction on the W boson mass from a top-quark loop. . . . . . . . . 13

2.10 Higher order correction on the W boson mass from a Higgs loop. . . . . . . . . . . 13

2.11 Constraints on the Higgs mass from MW and Mtop . . . . . . . . . . . . . . . . . . 14

3.1 Anatomy of the transverse energy in the D detector in a typical W → eν event. . . 17

3.2 MT (left) and pT(e) (right) spectra for W bosons with pW
T = 0 (solid line), with the

correct pW
T spectrum (points), and with detector resolutions (shaded area). . . . . 18

3.3 Definition of u|| and u⊥. It should be noted that u|| is defined as negative when
opposite the electron direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 The structure of the Fermilab collider. . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 The Tevatron bunch structure for Run II . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 The D0 coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 The D0 detector system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 A side-view of the complete tracking system . . . . . . . . . . . . . . . . . . . . . . 29

4.6 The D0 Silicon Microstrip Tracking detector. . . . . . . . . . . . . . . . . . . . . . 30

4.7 A side-view of the D0 Central Fiber Tracking detector. . . . . . . . . . . . . . . . . 31

4.8 A 3-dimensional view of the D0 calorimeters. . . . . . . . . . . . . . . . . . . . . . 33

4.9 A side-view of one quarter of the detector, showing the projective tower structure in
η and depth. The lines extending from the center of detector correspond to constant
pseudorapidities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.10 The schematic view of a typical unit cell, showing the gap structure, grounded
absorber plates, and read-out boards. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



4.11 Map showing the configuration of calorimeter cells as a function of detector η and
depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.12 Schematic of the electronic read-out system. . . . . . . . . . . . . . . . . . . . . . . 37

4.13 Typical signal shapes and various stages of the electronic readout. . . . . . . . . . 37

5.1 Comparison between the four EM fraction distributions of an uncalibrated tower
(points) and the average distributions for the eta ring (solid) . . . . . . . . . . . . 42

5.2 Comparison between the four EM fraction distributions of an uncalibrated tower
(points) and the average distributions for the eta ring (solid), after calibration . . . 43

5.3 Result of the calibration fit to data. The horizontal axis represents ieta and the
vertical axis represents the fit result for cieta(j). The grey areas show regions in
which we do not attempt to determine cieta(j). The point at ieta = −27 represents
the combined cieta(j) for −37 ≤ ieta ≤ −27, and the point at ieta = 27 represents
the combined cieta(j) for 27 ≤ ieta ≤ 37 (see text). The triangles represent the result
for data taken before the Sept-Nov 2003 shutdown, and the dots represent the result
for data taken after that shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Temperature plots of the inter-calibration constants for EM1 (upper left), EM2
(upper right), EM3 (lower left), and EM4 (lower right). . . . . . . . . . . . . . . . 45

5.5 The Width of the Z-peak for two CC elections, before (top) and after (bottom) the
in-situ calibration was performed. Resolution improves by roughly 10%. . . . . . . 46

5.6 The average energy deposited at a function of depth (in radiation lengths) for 45
GeV single-electrons at normal incidence, as estimated using a parameterized shower
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.7 The energy deposited at a function of depth (in radiation lengths) for 45 GeV
single-electrons at normal incidence (left) and η = 1.0 (right) as estimated using a
parameterized shower simulation. Each line represents one particular shower drawn
from a parameterized model for shower fluctuations [68]. One clearly sees the shift
of the shower earlier in the calorimeter as the angle of incidence increases. . . . . . 49

5.8 The energy deposited at a function of depth (in radiation lengths) for 45 GeV (left)
and 5 GeV (right) single-electrons at normal incidence. Each line represents one
particular shower drawn from a parameterized model for shower fluctuations [68].
One clearly sees the large shift of the shower earlier in the calorimeter at lower
energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.9 Fractional Energy Resolution for 45 GeV electrons as a function of physics η, in
geant Monte Carlo. The data points are generated from full geant Monte Carlo
of single electrons. The solid curve is a fit using the parameterization described in
Chapter 7 and the dashed line shows a 1/

√
sinθ dependence. . . . . . . . . . . . . 52

5.10 The fractional energy resolution due to sampling effects for electrons at normal
incidence as a function of energy. The data points are generated from full geant
Monte Carlo of single electrons. The dashed line represents a 1/

√
E dependence

and the solid line is a fit using the new parameterization described in Chapter 7. . 53

5.11 Fit result to the J/ψ resonance in “trigger low” data. . . . . . . . . . . . . . . . . 54

vi



5.12 Sampling resolution measured at the J/ψ versus kinematic category. The dark
error bars indicate the systematic uncertainty and the light error bars are the total
uncertainty. The dashed line indicates where the geant derived sampling resolution
is. The discrepancy points to missing material in the full simulation. . . . . . . . . 55

5.13 Likelihood function for the final fit results for missing X0 in the full detector simulation. 56

5.14 Results of fits for missing X0 in each EM layer, independently. . . . . . . . . . . . 56

7.1 The distribution of MZ vs. fZ in full Monte Carlo events. . . . . . . . . . . . . . . 65

7.2 The profile plot of MZ vs. fZ in full Monte Carlo events. . . . . . . . . . . . . . . . 65

7.3 Log plot of the energies in the window of towers rotated to a position azimuthally
adjacent to the electron window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.4 Figures showing the dependence on instantaneous luminosity (top) and u|| of the
underlying energy correction (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.5 Scatter plot of the shift between track position and calorimeter cluster center as a
function of extrapolated track φ-mod. . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.6 Profile plot of the shift between track position and calorimeter cluster center as a
function of extrapolated track φ-mod. . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.7 The selection efficiencies for electrons in FSR events as a function of the fraction of
electron energy carried by the leading photon, for bins in ∆R(eγ), proximity of the
photon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.8 The fraction of FSR photon energy lost from the electron as a function of Efracγ

for different bins in ∆R(eγ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.1 The trigger efficiency versus electron pT for four different run trigger periods: v11
(upper left), v12 (upper right), v13 (lower left, and v14 (lower right). . . . . . . . . 78

8.2 The tracking efficiency as a function of η and vertex z position shown as a lego plot
(left) and a box plot (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3 The Hmatrix efficiency versus ηdet . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.4 The distribution of MZ vs. fZ in full Monte Carlo events. . . . . . . . . . . . . . . 81

8.5 The u|| efficiency for Z → ee (top) and W → eν (bottom) events for full (black
points) and fast (blue points) MC. Good agreement is found. . . . . . . . . . . . . 83

8.6 The overall reconstruction efficiency as a function of SET for W and Z events. . . 84

8.7 The pT(e) based corrections on the overall SET efficiency, as a function of SET. . . 85

8.8 Left: pT dependence of HMx efficiency for CC electrons in data(black) and full
MC(red); Right: Ratio between the black and red curve in the left plot. . . . . . . 86

8.9 Left: pT dependence of track match efficiency for CC electrons in data(black) and
full MC(red); Right: Ratio between the black and red curve in the left plot. . . . . 86

vii



9.1 This figure shows an example distribution of the probabilities that a reconstructed
Z pT of 7 GeV with corresponding recoil of 3.5 GeV came from various true Z pT

bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.2 Plot (a) shows the comparison of mean recoil pT versus true Z pT (black, open
points) and mean recoil pT versus Z pT as estimated from the reconstructed di-
electron pT (red boxes). Plot (b) shows the comparison of mean recoil pT versus
true Z pT (black, open points) and mean recoil pT versus Z pT estimated from the
reconstructed di-electron pT, after unfolding (red boxes). . . . . . . . . . . . . . . 96

9.3 Plot (a) shows the comparison of the mean projection of the recoil along the boson
direction (py) versus true Z pT (black, open points) and the recoil py versus Z pT

as estimated from the reconstructed di-electron pT (red boxes). Plot (b) shows the
comparison of the recoil py versus true Z pT (black, open points) and the recoil py

versus Z pT as estimated from the reconstructed di-electron pT, after unfolding (red
boxes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.4 Plot (a) shows the comparison of the RMS of the opening angles between the recoil
and the boson versus true Z pT (black, open points) and the RMS of the opening
angles between the recoil and the boson versus Z pT as estimated from the recon-
structed di-electron pT (red boxes). Plot (b) shows the comparison of the RMS of
the opening angles between the recoil and the boson versus true Z pT (black, open
points) and the RMS of the opening angles between the recoil and the boson versus
Z pT as estimated from the reconstructed di-electron pT, after unfolding (red boxes). 98

9.5 Plot (a) shows the comparison of the RMS of the recoil pT versus true Z pT (black,
open points) and the RMS of the recoil pT versus Z pT as estimated from the
reconstructed di-electron pT (red boxes). Plot (b) shows the comparison of the
RMS of the recoil pT versus true Z pT (black, open points) and the RMS of the
recoil pT versus Z pT as estimated from the reconstructed di-electron pT, after
unfolding (red boxes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.6 Plot (a) shows the distribution of angles between the measured recoil and true
Z boson direction for Z events with a true Z pT of 4.0 to 4.25 GeV (solid line)
overlaid with the distribution of angles between the measured recoil and the Z
boson direction as estimated from the reconstructed di-electron pT (points with
error bars). Plot (b) shows the distribution of angles between the measured recoil
and true Z boson direction for Z events with a true Z pT of 4.0 to 4.25 GeV (solid
line) overlaid with the distribution of angles between the measured recoil and the Z
boson direction as estimated from the reconstructed di-electron pT, after unfolding
(points with error bars). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.7 Mean W boson mass measured in ensemble tests for each template generated from
a recoil file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.8 Mean W boson width measured in ensemble tests for each template generated from
a recoil file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.1 The three background shapes for the MT distribution: QCD (black), Z → ee (red),
and W → τν (blue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.2 The three background shapes for the "ET distribution: QCD (black), Z → ee (red),
and W → τν (blue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



10.3 The three background shapes for the pT(e) distribution: QCD (black), Z → ee
(red), and W → τν (blue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.1 Comparison plots between full MC (points) and fast MC (lines) for the W MT distri-
bution (top), W electron pT distribution (middle), and MET distribution (bottom).
Corresponding χ plots are shown on the right side. . . . . . . . . . . . . . . . . . . 115

11.2 Comparison plots between full MC (points) and fast MC (lines). Top left: Z mass
distribution. Top right: Z pT distribution, reconstructed from the di-electron pT.
Lower left: Z Recoil pT distribution. Lower right: Z electron pT distribution. . . . 116

13.1 Comparison of Z → ee invariant mass spectrum between data and fast MC. . . . . 127

13.2 Comparison of Z → ee pT(e) spectrum between data and fast MC. . . . . . . . . . 128

13.3 Comparison of Z → ee recoil pT spectrum between data and fast MC. . . . . . . . 129

13.4 Comparison plots between data (points) and fast MC (lines) for the W MT distri-
bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

13.5 Negative log-likelihood plot for the W boson mass fit to the MT observable. . . . . 131

13.6 Comparison plots between data (points) and fast MC (lines) for the pT(e) distribution.132

13.7 Comparison plots between data (points) and fast MC (lines) for the "ET distribution. 133

13.8 Left: W mass as measured from MT, pT(e), and "ET observables for two independent
run periods. Middle: The equivalent fits for the Z mass from the di-electron invariant
mass spectrum. Right: The fractional change in the W/Z mass ratio measured from
MT, pT(e), and "ET observables. The green line represents the nominal value. . . . 133

13.9 Left: W mass as measured from MT, pT(e), and "ET observables for two data
subsets, corresponding to different luminosities. Middle: The equivalent fits for the
Z mass from the di-electron invariant mass spectrum. Right: The fractional change
in the W/Z mass ratio measured from MT, pT(e), and "ET observables. The green
line represents the nominal value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

13.10Left: W mass as measured from MT, pT(e), and "ET observables for two data
subsets, corresponding to positive and negative u||. Middle: The equivalent fits for
the Z mass from the di-electron invariant mass spectrum. Right: The fractional
change in the W/Z mass ratio measured from MT, pT(e), and "ET observables. The
green line represents the nominal value. . . . . . . . . . . . . . . . . . . . . . . . . 134

13.11Left: W mass as measured from MT, pT(e), and "ET observables for two different
UT cuts. Middle: The equivalent fits for the Z mass from the di-electron invariant
mass spectrum. Right: The fractional change in the W/Z mass ratio measured from
MT, pT(e), and "ET observables. The green line represents the nominal value. . . . 135

13.12Left: W mass as measured from MT, pT(e), and "ET observables for two different
ηdet cuts. Middle: The equivalent fits for the Z mass from the di-electron invariant
mass spectrum. Right: The fractional change in the W/Z mass ratio measured from
MT, pT(e), and "ET observables. The green line represents the nominal value. . . . 135

13.13Comparison plots between data (points) and fast MC (lines) for the W MT distri-
bution on a log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

ix



13.14Comparison plots between data (points) and fast MC (lines) in the tail of the W
MT distribution on a log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

13.15Comparison plots between data (points) and fast MC (lines) in the tail of the W
MT distribution on a log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

13.16Comparison plots between data (points) and fast MC (lines) in the tail of the W
MT distribution on a log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

13.17Plots showing the blinded W boson width measurements for various sub-sets of
the data: separated into independent run-ranges (upper left), for different UT cuts
(upper right), separated into independent sets of instantaneous luminosity (middle
left), for different ηdet cuts (middle right), separated into positive and negative u||
(lower left), and for different φmod cuts (lower right). . . . . . . . . . . . . . . . . . 141

13.18Plots showing the variations of the measured W boson width for different values
for the lower range of the fit (top) and different values of the upper range (bottom)
with statistical error-bars. The yellow bands correspond to the fits using the Recoil
Library Method, and the red points correspond to the Parameterized Recoil Model. 142

13.19Fraction of events in the tail region [100,200] to events in the body [0,100] of the
W boson MT distribution versus blinded W boson width for fast MC templates.
The black lines represent the known tail-to-body ratio for the data, and ±1σ of that
ratio. The data line intersects with the graph at roughly 2.27 GeV, which agrees
with the blinded width value obtained through negative log-likelihood fits. . . . . . 143

13.20Plots showing the variations of the measured W boson width for different values
for the lower range of the fit (top) and different values of the upper range (bottom)
with statistical error-bars. The yellow bands correspond to the fits using the Recoil
Library Method, and the red points correspond to the Parameterized Recoil Model. 144

14.1 The new D0 W boson mass measurement compared with various other measure-
ments and the world average (yellow band). . . . . . . . . . . . . . . . . . . . . . . 146

14.2 The new D0 W boson width measurement compared with various other measure-
ments and the world average (yellow band). (still blinded) . . . . . . . . . . . . . 147

14.3 Plots showing the restricted regions where the Higgs mass is expected. . . . . . . . 148

A.1 The following plots show the toy u‖ distribution made using generator-level W → eν
events, a recoil library without FSR (a), and one with FSR (b). . . . . . . . . . . . 150

A.2 The projection of unmerged photon pT along the direction of the Z boson, versus
the pT of the Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.1 Example η-imbalance distributions corresponding to one particular 4 million event
W sample and the recoil modeled using one particular recoil histogram containing
18k events, with no hadronic smearing. Plot (a) shows the η-imbalance distribution
where the recoil response was modeled using linear fits to the recoil data (continuity
assumption). Plot (b) shows the η-imbalance where the recoil response is chosen
from the appropriate bin of the recoil histogram (discrete case). . . . . . . . . . . . 153

x



B.2 An example, generator-level W boson transverse mass distribution made using a
standard recoil histogram (solid-line), and using recoil histograms with the bin-by-
bin fluctuations amplified 2 (dashed-line) and 3 (dotted-line) times. No hadronic
resolution is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.3 The distribution of the means of η-imbalance distributions for 1000 toy W sets,
each generated from and independent recoil histogram containing 18k events, with
no hadronic smearing. Plot (a) shows the means of the η-imbalance distributions
where the recoil response was modeled using linear fits to the recoil data (continuity
assumption). Plot (b) shows the means where the recoil response is chosen from the
appropriate bin of the recoil histogram (discrete case). Note how the RMSs of these
two distributions are roughly equal. Since fluctuations in the mean η-imbalance
represent fluctuations in the mean response for a given recoil file, we see that the
continuous and discrete cases both model the mean response with the same precision.156

B.4 The RMS’s of the of η-imbalance distributions for 1000 toy W sets, each generated
from and independent recoil histogram containing 18k events, and no hadronic res-
olution. The solid line corresponds to the RMSs of the η-imbalance distributions
where the recoil response was modeled using linear fits to the recoil data (continuity
assumption). The dashed line shows the RMSs where the recoil response is chosen
from the appropriate bin of the recoil histogram (discrete case).Note that the aver-
age RMS of the η-imbalance distribution for the discrete look-up model is 10 times
larger than that of the parameterized model. . . . . . . . . . . . . . . . . . . . . . 158

B.5 The RMS’s of the of η-imbalance distributions for 1000 toy W sets, each generated
from and independent recoil histogram containing 18k events, and no hadronic res-
olution. The solid line corresponds to the RMSs of the η-imbalance distributions
where the recoil response was modeled using linear fits to the recoil data (continuity
assumption). The dashed line shows the RMSs where the recoil response is chosen
from the appropriate bin of the recoil histogram (discrete case). Plot (a) shows the
case where the hadronic sampling term is 0.4

√
GeV and plot (b) corresponds to the

case where the hadronic sampling term is 0.8
√

GeV. Note that as the hadronic res-
olution gets progressively worse, differences in the RMSs of the η-imbalance between
the discrete and continuous model become negligible. . . . . . . . . . . . . . . . . . 159

B.6 An example, generator-level W boson transverse mass distribution made using a
standard recoil histogram (solid-line), and using recoil histograms with the bin-by-
bin fluctuations amplified 2 (dashed-line) and 3 (dotted-line) times. An 0.8

√
GeV

hadronic resolution is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B.7 The distribution of the means of η-imbalance distributions for 1000 toy W sets,
each generated from and independent recoil histogram containing 18k events, with
a hadronic sampling resolution of 0.8

√
GeV. Plot (a) shows the means of the η-

imbalance distributions where the recoil response was modeled using linear fits to
the recoil data (continuity assumption). Plot (b) shows the means where the recoil
response is chosen from the appropriate bin of the recoil histogram (discrete case).
Note that the RMS values of these two distributions is the roughly the same as for
the case with no hadronic resolution. This tells us that fluctuations in the mean
recoil response are the same, regardless of whether additional hadronic smearing is
applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xi



List of Abbreviations

SM Standard Model
EM Electromagnetic
EW Electroweak
MET Missing Transverse Energy
SMT Silicon Microstrip Tracker
CFT Central Fiber Tracker
VLPC Visible Light Photon Counter
WLS Wave length Shifting
CPS Central Preshower
FPS Forward Preshower
MIP Minimum Ionizing Particle
EC Endcap Calorimeter
CC Central Calorimeter
FH Fine Hadronic
CH Coarse Hadronic
ICD Inner Cryostat Detector
ICR Inner Cryostat Region
PDT Proportional Drift Tube
MDT Mini Drift Tube
PMT Photo Multiplier Tube
MUC Central Muon Detector
MUF Forward Muon Detector
L1, L2, L3 Level 1, 2, 3 (trigger)
ADC Analog to Digital Converter
DCA Distance of Closest Approach
HTF Histogram Track Finder
AA Alternative Algorithm
SET Scalar ET

xii



Chapter 1

Introduction

The W and Z bosons are the massive gauge bosons that, along with the photon, mediate

electroweak interactions. The properties of these bosons are not only interesting in their own right;

they are also important because they could point to unobserved physics such as the spontaneous

symmetry breaking through which the W and Z bosons are hypothesized to acquire mass. The

mass of the W boson is sensitive to radiative corrections from the Higgs and potentially other exotic

particles. Precision measurements of the W boson mass, combined with those of the top quark

mass and other electroweak observables, can place limits on the expected mass of the Standard

Model (SM) Higgs boson.

This dissertation presents a measurement of the W boson mass (MW ) and decay width (ΓW )

using W → eν events from 1 fb−1 of collider data collected in the DØ detector at the Tevatron.

Extracting MW and ΓW from W → eν requires a physics model for the production and decay of

the W boson, as well for detector effects in measuring the relevant observables. The two main

components of a W → eν decay are the decay electron and the measured hadronic recoil, which

consists of the “hard recoil” that balances the momentum of the boson transverse to collision

and any other hadronic energy produced in the detector. The electron is a single particle, with

a well-understood energy response in a collider detector like DØ. The measured hadronic recoil,

on the other hand, is a complicated admixture of several different effects, making it difficult to

model on first principles. We have developed an alternative, heuristic approach to modelling the

recoil. Simulated W → eν events are overlaid with data recoils chosen from a library of Z → ee

events alligned to match the direction and transverse momentum of the generated W boson.

This approach requires no a priori understanding of the recoil, has no tunable parameters, and

reproduces all of the complex detector effects observed in data. This method provides an excellent

cross-check on the W boson mass measurement, and a useful alternative for the measurement of
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ΓW , where the recoil model is the dominant systematic.

Versions of the Recoil Library Method have been proposed in the past [1]. What is of

particular interest in this dissertation is a Bayesian unfolding technique for removing detector

effects on the measured momentum of the Z boson. Implementation of the recoil library method

requires that the data recoil library describe the measured recoil in relation to the true boson

momentum and direction. However, data gives the measured recoil in relation to the measured Z

boson pT, as reconstructed from the two decay electrons, which can fluctuate non-trivially from

the true momentum in both magnitude and direction. Early use of recoil libraries neglected this

effect, since statistical uncertainties dominated. To the level of precision demanded at the Run II

Tevatron and expected at the LHC, this effect is large compared to statistical uncertainties.

In this dissertation we will cover the entire Run IIa program for measuring the W boson

mass and width, with special attention paid to the novel recoil model used.

In the next chapter, we will briefly survey the important topics in theoretical particle physics.

Chapter 3 provides a detailed discussion of the MW and ΓW measurement strategy. Chapter 4

contains a description of the Tevatron accelerator and the DØ detector. A great deal of work was

done in Run II to improve our understanding, and thus the perfomance, of the upgraded detector.

We describe this work in Chapter 5. The data are described in Chapter 6. Chapter 7 outlines

the parametric model used to simulate electron measurement, and Chapter 8 covers the efficiency

models. Chapter 9 outlines the implementation of the heuristic Recoil Library Method and its

systematics, as well as a brief treatment of the parametric recoil model. Chapter 10 discusses the

relevant backgrounds. We test our methodology on realistic a geant-based W → eν simulation in

Chapter 11. Chapter 12 discusses systematic uncertainties for the MW and ΓW measurements, and

Chapter 13 presents the results. Finally in Chapter 14 we discuss conclusions and future prospects

from the measurements. The appendices contain several detailed discussions relevant to the recoil

model presented in this dissertation.
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Chapter 2

Review of Theoretical Particle Physics

In this Chapter, we will review aspects of theoretical physics relevant to the measurement

of the W boson mass and width, and provide context for its significance in the larger program of

experimental particle physics.

2.1 The Standard Model

The goal of elementary particle physics is to provide a consistent, first-principles description

of the fundamental constituents of matter and energy with minimal starting assumptions and input

parameters. The “Standard Model” is the name given to our best complete description to date.

Further reading on the topic can be found in [2, 3, ?].

The Standard Model divides fundamental matter particles into quarks and leptons, both

spin-1/2 fermions. The quarks and leptons are then further divided into three generations, each

consisting of two quarks, one charged lepton, and one nearly massless neutral lepton, known as

a neutrino. The quarks and charged leptons in each generation are successively more massive.

All known, stable matter is comprised of the first and lightest generation, which consists of the

up-quark, down-quark, electron, and electron neutrino.

The fundamental interactions between matter particles are traditionally divided into four

basic forces: strong force, electromagnetism, weak force, and gravitation, listed in order of de-

creasing strength. The quantum mechanical model of these forces describes them as the exchange

of mediating particles called gauge bosons. The properties of these gauge bosons determine the

nature of the fundamental forces. Electromagnetism is mediated by a massless spin-1 particle

known as the photon (represented by γ), which couples to electric charge. The quantum theory

describing electromagnetic interactions, Quantum Electrodynamics or QED, is a triumph of mod-

ern physics, able to predict electromagnetic phenomena with remarkable precision. The weak-force
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Figure 2.1: The particles of the Standard Model.

is a short-range force carried by the massive (≈ 80 GeV) charged W± boson and the massive (≈90

GeV) neutral Z0 boson. The weak force couples to weak isospin. “Electroweak Theory” provides

a unified framework for describing both the electromagnetic and weak forces, and is a major pillar

of the Standard Model. The strong force, carried by massless bosons called gluons, couples to 3

“color” charges, so named as a matter of convention and not because of any connection with optical

color. Like the weak force, the strong force has a very short range. The theoretical framework for

understanding strong force is called Quantum Chromodynamics or QCD. The gravitational force,

which couples to mass, is not described by the Standard Model.

Quarks are strongly interacting particles, although they can also interact electroweakly.

The strong force only permits “color neutral” bound states of either quark-antiquark pairs or

triplets of three quarks (each one a different color), and has the unusual property that its strength

increases with distance. As a consequence, single quarks cannot stably exist. Quark matter is

called “hadronic” matter and bound states are called hadrons. The most common hadrons are

protons and neutrons which consist of up and down quarks (uud and ddu, respectively).

Leptons interact primarily through electroweak interactions, with charged leptons interact-
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ing both electromagnetically and weakly. Charge-neutral neutrinos can only interact via the weak

force, which is why they are so difficult to detect. The gauge bosons can also interact with each

other, while gluons and W bosons can even self-couple. Figure 2.2 shows the possible interactions

allowed between quarks, leptons, and bosons.

Figure 2.2: Allowed interactions in the Standard Model.

One of the outstanding questions of electroweak physics is the origin of mass. Gauge theo-

retic descriptions of the electroweak force, built around symmetry arguments, predict three mass-

less gauge bosons. However, in nature we observe one massless photon and two very massive weak

bosons. The Standard Model framework for addressing the origin of this mass hypothesizes the

existence of a quantum field that spontaneously breaks electroweak symmetry, introducing mass

terms into the Lagrangian [5]. This Higgs field is given by the Lagrangian:

LHiggs = (Dµφ)†(Dµφ)− V (φ†φ), (2.1)

where V has the form,

V (φ†φ) = −µ2(φ†φ) +
1
4
|λ|(φ†φ)2, (2.2)

This potential has a non-zero vacuum expectation value, and the degenerate set of true

minima do not respect the electroweak symmetry. In quantum field theory all physical fields must

be expanded around the real vacuum. Gauge freedom allows us to chose one of the degenerate
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minima about which to expand the new electro-weak fields. Quadratic terms in the new Lagrangian

built around this minimum introduce masses to two of the three electroweak bosons and correctly

predict their relative masses (for further reading, see [6, 7]):

MZ = MW / cos θW , MA = 0, (2.3)

where θW is a parameter called the “weak mixing angle”. The corresponding boson to the Higgs

field is the last remaining particle predicted by the Standard Model that has not yet been observed.

Ongoing searches at LEP and the Tevatron have greatly reduced the range of masses a standard

model (SM) Higgs is expected to have. A low mass Higgs could be detected at the Tevatron, and

will almost certainly be discovered at the LHC, if it exists.

Quantum Electroweak Theory predicts that, at the≈ 2% level, the W boson mass is sensitive

to higher order corrections from Higgs loops. Precision measurements of MW , combined with those

of the top quark mass significanly constrain the likely mass of the SM Higgs, if it exists. These

results are of great importance to the physics world. They stand among the major goals of

Run II at the Tevatron and could be among its lasting legacies. In addition the W boson mass

would be subject to corrections from other exotic physics beyond the Standard Model, such as

Supersymmetry.

The W and Z boson were first hypothesized by Glashow, Salaam, and Weinberg in the

1960’s [8]. They were first observed by the UA1 and UA2 collaborations in the 1980’s [9]. With

roughly 17 million Z decays collected at LEP, and 600,000 at SLAC, the properties of the Z are

very well measured. For example, the Z mass is known to a precision of 2.1 MeV [10]. In contrast,

because of the low cross-section for e− e+→W+W− at the lepton collider, measurements of the

W boson mass remain less precise, with an uncertainty on the current world average of only 25

MeV [11].

The measurements presented in this dissertation represent a continuation of these elec-

troweak efforts and a modest step towards the completion of electroweak theory.
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2.2 Production and Decay of the W and Z Boson

In hadron colliders, at leading order in αs, the Z and W bosons are produced by quark

anti-quark annihilation with no momentum in the plane transverse to the beam. However, higher

order processes can include radiated gluons or quarks that balance the transverse momentum of

the boson. These processes are similar for both the W and Z bosons, as are the resulting boson pT

spectra, with maxima around 3 GeV and broad tails in the high pT region [13]. Figure 2.3 shows

an example diagram for the production of W/Z bosons with two radiated gluons. Figure 2.4 shows

the typical first-order process.

P
u )u (d P

)0  (Z+W

+e )-  (eν

g
g

Figure 2.3: Basic production and leptonic decay for W/Z bosons with radiated gluons.

The quark anti-quark pairs that produce the W and Z bosons can come from a pp̄ collisions.

Conceptually the proton and anti-proton are imagined as consisting of three quarks each, uud in

the case of the proton and ūūd̄ for the anti-proton. In actuality, these hadrons contain not only

the three “valence” quarks, but also gluons, which carry roughly half of the proton momentum,

and a flux of virtual quark and anti-quark pairs, called “sea” quarks. Both gluons and sea quarks

can contribute to W and Z boson production. In addition, once the proton and anti-proton are
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Figure 2.4: First-order production diagrams for the W and Z boson.

fragmented after producing a W or Z boson, the sea quarks and gluons help to drive “hadroniza-

tion” of the remaining quarks into color-neutral pairs and triplets. The hadronic material from

the partons not involved in boson production consists of typically 6 isolated, low pT pions per unit

rapidity at Tevatron energies, and constitutes what is known as the “underlying event”.

The parton-level cross-section (σij(ŝ)) for two spin 1/2 quarks producing a spin-1 boson are

given by the Relativistic Bret-Wigner Resonance:

σij(ŝ) =
1
3
|Vij |2

3π

(
GM2

V√
2

)2
ŝΓ2

0/M
2
V

(ŝ−M2
V )2 + (ŝΓ0/MV )2

(2.4)

where ŝ is the parton center-of-mass energy, G is the Fermi constant Vij is the CKM Matrix named

after Cabbibo, Kobayashi, and Maskawa that describes quark mixing (ref), and MV and Γ0 are

the mass and width of boson, respectively.

While the Tevatron collides the protons and anti-protons at
√

(s)=1.96 TeV, with center

of mass in the lab frame, the constituent quarks or gluons in each parton carry varying fractions

of the total parton momentum. Consequently, the quark or gluon collisions that produce the

bosons are not typically at rest with respect to the detector, nor is the collision energy typically
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at the full 1.96 TeV. The momentum fractions x1 and x2 of two partons q1 = x1P1 q2 = x2P2

where P1 and P2 are the proton and anti-proton momenta. At the center-of-mass frame of the two

partons,
√

ŝ =
√

x1x2s. Figure 2.5 shows the momentum fractions carried by partons in a proton

at Q2 = 102 GeV.

Figure 2.5: Momentum fractions carried by partons in a proton at Q2 = 102 GeV.

Then, the total cross-section is then given by the sum over all parton-level cross-sections,

convoluted with the parton distribution functions, giving the momenta fractions of all possible

parton combinations:

σ =
∑

ij

∫
dx1dx2fi(x1, Q

2)fj(x2, Q
2)σ̂(ij) (2.5)

and the differential cross-section with respect to boson pT and rapidity (y) is given by:

d2σ

dPTdy
=

∑

ij

∫
dx1dx2fi(x1)fj(x2)

d2σ(ij → V )
dPTdy

(2.6)

Figures 2.6 and 2.7 show several of the next-to-leading-order (NLO) production diagrams

for Z and W bosons. Radiated quarks and gluons in these, as well as higher-order diagrams,

contribute to the transverse momentum of the bosons [12]. For relatively high boson pT (pT ∼MV ),

9



the production cross section can be calculated perturbatively, and the resulting differential cross-

section has the form:

d2σ

dPTdy
∼ αW αS(a1 + a2αS + a3α

2
S + ...), (2.7)

where αW is the weak coupling constant and αS is the strong coupling constant.

The dominant contributions to these higher order effects are of the form:

d2σ

dPTdy
∼ αW αS

p2
T

ln(
Q2

p2
T

)
[
v1 + v2αS ln2(

Q2

p2
T

) + v3α
2
S ln4(

Q2

p2
T

) + ...

]
(2.8)

where Q2 is the square of the boson mass. For low momenta (pT → 0), these perturbative

calculations break down, because the 1
p2
T

ln2(Q2

p2
T

) terms diverge. In this non-perturbative regime,

a method called “resummation” must be used to estimate the pT spectrum [14].

Because the W and Z bosons share similar QCD production mechanisms and masses, the

resulting pT spectra are similar. We exploit this fact later, in our development of the Recoil Library

Method.

u

d
−

g
d
−

W+
u,d

u
−
,d
−

g
u
−
,d
−

Z

Figure 2.6: Compton scattering in Z and W boson production.

Figure 2.8 shows the known, leading-order decay channels of the W and Z bosons. In this
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Figure 2.7: Initial-state gluon radiation in Z and W boson production.

thesis, we study the W → eν and Z → ee channels exclusively. These channels provide the cleanest

signal to QCD backgrounds, and the DØ detector is best suited for measuring electron energies.

2.3 The W boson Mass and Width

The W and Z boson masses are given by electroweak symmetry breaking as

MW = gν/2, MZ = MW / cos θW , (2.9)

where ν is the vacuum expectation value of the Higgs field, g is the electroweak coupling, and θW

is the weak mixing angle. The tree-level W boson mass is given by:

M tree
W =

(
πα√
2GF

)1/2 1
sin θw

≈ 79GeV, (2.10)

where GF is the Fermi coupling constant, which can be measured precisely from muon decays.

Similarly, the tree-level Z mass is roughly 89 GeV. The precise masses of these particles must

include higher order diagrams, such as the Top quark and Higgs boson loops shown in Fig 2.10

and 2.9. The formula for the W mass, including these effects can be given by:
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Figure 2.8: Known decay channels for the W and Z boson.

MW =
(

πα√
2GF

)1/2 1
sin θw

√
1−∆r

(2.11)

where ∆r are the radiative corrections from higher order corrections [15], and account for a mod-

ification on the tree-level mass of a few percent. The correction to the W boson mass ∆MW =

MW −M tree
W is related to the top quark mass and Higgs boson mass by ∆MW ∝M2

top −M2
bottom

and ∆MW ∝ log MH . From these relationships, we are able to compare the necessary precision

of the W boson mass measurement to that of the top quark mass in constraining the Higgs boson

mass [16], given by ∆MW ≈ 0.006∆Mt. With a current precision on the top quark mass of 1.2

GeV, we would need a precision of roughly 10 MeV on MW to achieve the equivalent constraint on

the Higgs. This is the challenge for the combined W boson mass measurements at DØ and CDF

in Run II of the Tevatron.

Additional contributions to ∆r can arise from physics beyond the Standard Model, such as

SUSY. Thus, the W boson mass serves both as a test of the Standard Model, and a probe for new

physics.

The W boson decay width (ΓW ) is another significant standard model parameter [17, 18].

Direct measurements of ΓW are important as complements to the indirect measurements extracted
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Figure 2.9: Higher order correction on the W boson mass from a top-quark loop.

Figure 2.10: Higher order correction on the W boson mass from a Higgs loop.

from the cross-section ratio R. The direct measurement has very different systematics from the

indirect approach. Many of these systematics will scale down with more statistics in our calibration

samples. Direct measurement of the W boson width does not require theoretical inputs for σW /σZ

and Γ(W → eν) which might be sensitive to physics beyond the Standard Model. Because the

width measurement looks at kinematic regions high above the mass pole, it is sensitive to new

physics such as an additional heavy vector boson (W ’). The partial width ΓW (W → eν) is given

by:

Γ(W → eν) =
GµM3

W

6π
√

2
[1 + δSM ] , (2.12)

where Gµ = (1.16639± 0.00002)× 10−5GeV/c2 is the muon decay constant, and δSM corresponds

to small higher-order SM corrections.

The measurement described in this thesis assumes the Standard Model value for the ratio

Γtot(W )/Γ(W → eν), predicted to be

Γtot(W )
Γ(W → eν)

= 3 + 6 [1 + αs(MW )/π] , (2.13)
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Figure 2.11: Constraints on the Higgs mass from MW and Mtop
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and is therefore sensitive to exotic decay channels that would raise this ratio [19]. Thus, ΓW , like

the mass, is a good probe for new physics.
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Chapter 3

Measurement Strategy

The W mass and decay width are measured from data distributions of observables that

are sensitive to MW and ΓW . We compare the data distributions with simulated distributions

generated at various mass or width values, until we find the mass or width that gives the closest

comparison. A prerequisite for precision W measurements is an accurate, fast MC method for

producing these template distributions. This fast simulation must reproduce the underlying physics

for the relevant processes. It must also accurately reflect the detector response for measuring the

observables. Both the lepton energy and the measured recoil need to be well described by the fast

MC in order to accurately extract the W mass and width. For further reading, see [20]-[24] on

the W boson mass, and [25]-[27] on the direct width measurement. In this chapter we look at the

kinematic observables used to extract MW and ΓW . We describe the overall strategy for producing

the template distributions that we compare with data, and the fit method used to extract the mass

and width from these template fits.

3.1 Kinematics and Observables

In typical hadron colliders like the Tevatron, only the leptonic W boson decay channel

(W → eν, l =e,µ) provides a sufficiently clean detector signature over QCD backgrounds. For

similar reasons, the Z data used in our analyses are Z → ll decays. In this dissertation we focus

on the electron channel, specifically.

Since neutrinos in W → eν decays cannot be directly measured, their energy can be inferred

using momentum conservation. Since typical hadron collider detectors are uninstrumented in the

forward region along the beam pipe (|η|4.0), some of the forward momentum is lost, and we can

only evoke conservation of momentum in the transverse plane with respect to the beam direction.

Typical observables include the transverse momentum of the electron (pT(e)), missing transverse
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energy ( "ET ), and a kinematic quantity known as the transverse mass (MT), given by:

Figure 3.1: Anatomy of the transverse energy in the D detector in a typical W → eν event.

MT =
√

2pT(e)"ET (1− cos(∆φ)), (3.1)

where ∆φ is the opening angle between the charged lepton and "ET in the transverse plane. This

resembles the form for the invariant mass:

MT =
√

2p(e1)p(e2)(1− cos(∆Ω)), (3.2)

Figure 3.2 shows typical MT and pT(e) distributions for a W boson. The "ET distribution

looks similar to the electron pT(e). The key features of these distributions are the sharp “Jacobian

Edge” followed by a long tail in the high MT or pT regions. These regions are most sensitive to

the underlying physics of the W boson, whereas the broad shoulder in the low MT or pT regions is

mostly driven by kinematics and selection efficiencies. The Jacobian Edge for all three observables

is most sensitive to MW , whereas the fraction of events in the tail is most sensitive to the natural

width, ΓW .

W boson mass measurements extracted from the MT, pT(e), and "ET distributions have

different systematic sensitivities, and thus complement each other. One can see from Fig. 3.2,
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that the MT distribution is very robust over wide variations in the input pW
T spectrum, whereas

the pT(e) spectrum varies significantly for different input boson momenta. This makes conceptual

sense, since the effects of a boost on the electron and "ET should cancel in the calculation MT,

while the pT(e) spectrum is explicitly dependent on the momentum of the decaying boson. In

contrast, we see that the MT observable is sensitive to detector resolution effects, which the pT(e)

is relatively stable.

mT (GeV)

dN
/d

m
T

55 60 65 70 75 80 85 90 95
pT(e) (GeV)

dN
/d

p T(
e)

30 35 40 45 50

Figure 3.2: MT (left) and pT(e) (right) spectra for W bosons with pW
T = 0 (solid line), with the

correct pW
T spectrum (points), and with detector resolutions (shaded area).

We identify W → lν decays by selecting events with one high transverse energy lepton and

large "ET , corresponding to the neutrino. Conceptually the "ET is reconstructed by vectorially

summing the lepton transverse momentum and the “measured recoil” (or “recoil system”) which

comprises all of the additional transverse momentum in the detector besides the lepton.

The recoil system consists of the hard recoil from gluon or quark radiation and underlying

event, as well as energy from additional collisions, “pileup” (which we define as residual energy

from previous crossings), overlap with electron energy, and noise.

The hadronic recoil is difficult to model on first principles because it is not a singular object,

like the decay lepton. The various components of this measured recoil system all have different

dependences on instantaneous luminosity. For example, pile-up and additional pp interactions scale
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with instantaneous luminosity, while the underlying event is luminosity independent. Moreover,

detector effects such as zero-suppression cuts can introduce correlations between the calorimeter

response to the hard recoil and any additional hadronic energy in the event. Because of this cross-

talk, the hard recoil and various soft recoil components cannot be treated as independent effects

in the detector.

Kinematically, the true momentum of a boson and that of its hard recoil should be equal and

opposite. Because the detector response to hadronic energy is very different than the response to

lepton energy (e/h ≈ 1/2), the measured recoil and measured boson momentum are not typically

the same. Consequently, the recoil is relatively poor measure of pW
T . However, the pT of the Z

boson can be reconstructed as the sum of the momenta of the two decay leptons. Since lepton

energies are well measured and well understood in collider detectors, the dilepton pT provides a

good first approximation of the true boson momentum.

p
→
T(e)

u
→
T

p
→
T(ν)

u||

u⊥

Figure 3.3: Definition of u|| and u⊥. It should be noted that u|| is defined as negative when

opposite the electron direction.

For the W boson, we can only approximate the boson momentum using the recoil, since the

momentum of the neutrino is lost. We often refer to the recoil pT of the event as UT.

Two other useful kinematic quantities used in our efficiency model and to check the accuracy

of our recoil model are u|| and u⊥, which are defined as the parallel and perpendicular components

of the recoil with respect to the electron direction in the transverse plane. Figure 3.3 illustrates
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this definition.

3.2 Template Production

We use a fast Monte Carlo (MC) model to generate template distributions of various W

boson observables at varying mass and width values. This fast Monte Carlo Model must accurately

simulate the underlying physics for the production and decay of W bosons, and detector effects.

For testing and cross-check purposes we have two different fast Monte Carlo methods, built

around a common event generator and parametric model for the electron measurement, but with

different recoil models. In this section we describe the main common elements of both fast MC

models.

3.2.1 Generator

We use two event generator configurations as inputs to our fast Monte Carlo Model, pythia,

and a combination resbos [28] and photos [31]. The combined resbos + photos is used for

our main data analysis. pythia [33] is used in our studies from a geant-based detector model

(described at the end of this section), because it has a hadronization model that describes the

complete event, even though its boson pT model is known to be inadequate. In this thesis, we will

focus mainly on the event generation used in the data analysis.

resbos, which stands for RESummed BOSon production and decay, computes the differen-

tial cross-section for production of W and Z bosons in pp̄ collision, including soft-gluon, resummed

QCD corrections. At large pT, where resummation techniques fail, resbos uses a fixed, next-

to-leading order, perturbative calculation. photos is used to model final state radiation (FSR).

Recent DØ analyses have found that this resbos + photos combination is successful in accu-

rately describing boson pT spectra [?]. The inputs to this generator and their uncertainties will be

discussed further in Chapter 12.
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3.2.2 Detector Simulation

The two main components of the detector simulation are the electron measurement and

the recoil measurement. Our electron model is parametric, whereas the main recoil model used

in this thesis is the “Recoil Library Method”, which extracts recoils from a library of data or

MC Z → ee recoils . There is also a parameterized recoil model used for the default W boson

mass analysis (“Parameterized Recoil Method”), but we use that model only as a cross-check on

the Recoil Library Method in this thesis. Both the electron model and recoil simulations will be

described at length in Chapters 7 and 9. In addition to recoil and electron simulations we apply

efficiency models (Chapter 8) and backgrounds (Chapter 10). Adjustable parameters in the fast

MC are tuned to an independent but kinematically similar data set, namely the Z → ee sample.

The recoil library used in the Recoil Library Method also comes from this sample. Accordingly,

many of the systematic uncertainties in the W boson mass and width measurements are limited

by the precision of our tuning to the roughly 18k central Z → ee events we have available.

We generate fast MC in steps of different mass or width values for the template sets used in

our fits. Rather than entirely regenerating our fast MC for each different mass and width value, we

generate our fast Monte Carlo at the nominal mass value and width in resbos, and rewieght the

events by the probability that each generated event at the nominal mass and width could occur

at the various mass and width values of the templates. This reweighting factor is determined by

the Breit-Wigner Equation, and allows us to make all of our templates analytically from one set

of simulated events.

3.2.3 MC Testing

To test our fast MC methods and asses systematic uncertainties, we often generate “toy”

data or “psuedo experiments” using the same fast MC model that we used to make the template

distributions for our fits. We measure the MW or ΓW in these toy samples to study statistical

effects in our measurement procedure or systematic effects due to variations in the tunable MC

parameters. We test for biases in the implementation of the Recoil Library Method on “toy” W
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data and Z recoil libraries, made from samples created using the Parameterized Recoil Method,

and extracting the W mass and width from these fast MC samples.

We also test both the Recoil Library Method and the Parameterized Method on a more

realistic MC sample produced using a geant based full detector model with full offline reconstruc-

tion as in data. The full simulation uses pythia to simulate the production and decay of the W

boson, as well as the underlying event and any final state radiation. The four-vectors are then

propagated through an accurate material description of the detector using geant. geant is a

detector description and simulation tool that propagates generated high energy particles through

an accurate material description of the detector, calculating the probabilities of atomic and nuclear

interactions, based on their well-known cross sections for each step of the particles’ paths [87]. Real

zero-bias data with the same instantaneous luminosity profile as the W → eν sample is overlaid

on the full detector simulation to model additional collisions and noise in the detector. The raw

signal is then processed and reconstructed as it would be in data. This full detector simulation

will be referred to as “full MC” for the rest of this thesis.

3.3 Basic Fit Strategy

The W boson mass is extracted from fits to the template sets of MT, pT(e), and "ET dis-

tributions using a binned negative log-likelihood method [?] and a custom made utility called

wzfitter [36], built around the minuit minimization package [37]. High statistics template dis-

tributions are generated using the model described in this dissertation for different values of the

W Mass in 10 MeV steps. Polynomial splining is used to interpolate between those steps and

generate W → lν templates for a continuum of mass values. This is an appropriate approach to

interpolation, since all of the template distributions are made from the same, single set of gener-

ated W events (re-weighted according the the Breit-Wigner distribution) and thus vary smoothly.

We compare the data to these simulated distributions for varying mass values, until we find the

W mass which minimizes the negative log-likelihood. Our fit ranges are [32,48] GeV for the pT(e)

and "ET distributions, and [60,90] for the MT distribution. For the W boson width we fit the MT
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distribution over the range [100,200] GeV.

We approach normalization differently for the W mass and W width measurements, since we

are looking at different subranges of the relevant observables. For the W width fit, we normalize up

to but excluding the tail region, and then fit over the tail region of the transverse mass distribution.

For the W mass measurement, we normalize over the same subrange that we fit, regardless of

whether we use MT, pT(e), or "ET as our observables.

For the fits to the various W and Z boson observables, we almost exclusively use the negative

log-likelihood, given by the following formula:

L =
N∑

i=0

−di log ti + ti (3.3)

Where i = 0 is the first bin of the histogram, N is the total number of bins, including the overflow,

di is the content of the ith bin in data, and ti is the content of the ith bin in the template

distribution we are comparing with the data.

3.3.1 Blinding

One other important feature is also built into the wzfitter code, which is used in the data

analysis only. The data analysis described in this thesis is a “blind analysis” [38]. The actual MW

or ΓW value of the fit is hidden from the analyzers, to prevent any biased predisposition to adjust

the model based on the expected PDG W boson mass or width. Instead, the fitter provides us the

fit values with a hidden offset added on. We cannot know the true fit results to MW or ΓW , but

we can still test the consistency of the fits over different fit ranges and sub-sets of the data, which

should hopefully give the same blinded result. We have also incorporated the blinding into our

plotting software, so we can compare data with fast MC generated at the actual fit value, given

the blinded value. Once these various cross-checks are performed and the analyzers are confident

in there results, the blinding is turned off and the final fits values revealed.
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Chapter 4

Experimental Setup

4.1 The FermiLab Accelerator

The accelerator at Fermilab is a pp collider with 1.96 TeV center of mass energy, the most

luminous hadron accelerator and highest energy collider of any kind until the turn-on of the LHC

at CERN [48]. The main ring of the accelerator, where protons and anti-protons reach their

maximum energies of 980 GeV, is the 6.28 km circumference Tevatron. However, the Tevatron

is actually the end of a multi-part chain of accelerators, storage rings, and switch-points used to

produce and accelerate the hadrons. This finely tuned system is run day and night by hundreds

of engineers who monitor and adjust its roughly 200,000 control parameters. Figure 4.1 illustrates

the the Fermilab accelerator.

Protons are generated from a source of H− ions accelerated initially by a Cockroft-Walton

generator and, then, a linear accelerator known as the Linac. In the Linac the ions reach an energy

of 400 MeV before passing through a thin carbon foil, which strips off the electrons, leaving a pure

proton beam. The protons are stored at 8 GeV and organized into a bunch structure in the Booster

ring before being passed to the Main Injector. Anti-protons are produced by colliding 120 GeV

protons from the Main Injector into a nickel fixed target. Roughly 1 anti-proton is generated for

every 105 protons. The anti-protons are collected and then cooled to 8 GeV, stored, and organized

into a bunch structure in the Debuncher and Accumulator Ring.

Both protons and anti-protons are accelerated to 150 GeV in the Main Injector before

entering the Tevatron to reach the final 980 GeV. These charged particles are accelerated by

alternating electric fields and held in their circular path by super-conducting magnets. The beam

of protons and anti-protons is organized into 36 bunches. These 36 bunches are divided into

3 super-bunches, of 12 bunches each. The bunches within each super-bunch are separated by
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Figure 4.1: The structure of the Fermilab collider.

3, 132ns “ticks” and the super-bunches are each separated by 17 such ticks. This structure is

illustrated in Fig 4.2.

The proton and anti-proton beam circle in opposite directions, separated from each other

along helical trajectories. The beams are compressed by focusing quadrapole magnets and collide

at two points along the Tevatron, B0 where CDF is located, and DØ. The cross section of the beam

at these collision points is roughly 10−5 cm2, and the length of the luminous region is roughly 30

cm.

4.2 The DØ Detector

The DØ detector, shown in Fig 4.4 is a multipurpose array of subdetectors, each designed

to measure different properties of the high energy particles produced in pp̄ collisions. The main

components are the tracking system used for position and momentum measurement of charged
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Figure 4.2: The Tevatron bunch structure for Run II

particles, the pre-shower detectors and calorimeters used to measure energy, the muon system for

identification and momentum measurement of muons, the luminosity counters, and trigger system.

The detector follows a cylindrical geometry, wrapped around the beam axis, which we define as

the z-axis. The coordinate system is shown in Fig 4.3. More detailed detector descriptions can be

found in [43, 44, 51].

Because the beam pipe through the z axis of the detector is left un-instrumented, particles

with high forward or backward momentum can escape undetected. As a consequence of this, the

full energy and momentum of a collisions cannot be measured and we are forced to use transverse

observables, as was discussed in Chapter 3.

4.2.1 Tracking System

The tracking system, used for precision position and momentum measurements, consists

of three primary components: a silicon microstrip detector (SMT) [52] a central fiber tracker

(CFT) [?], both surrounded by a 2 Tesla solenoid magnet. Figure 4.5 shows the complete tracking

system.

The solenoid is a superconducting magnet, consisting of coiled niobium-titanium wire and
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Figure 4.3: The D0 coordinate system

encased in an aluminum cylinder. The magnet is chilled to 4.2 Kelvin with liquid helium. The

solenoid is 2.8 meters in length, 1.42 m in diameter and has an average thickness of 60 cm. The

solenoid and cryostat wall together contribute around 1.0 radiation lengths of material in front of

the calorimeter.

Charged particles bend in the magnetic field provided by the solenoid. This curvature is

measured by the SMT and CFT and used to determine the transverse momentum per charge pT /q

according to the relationship:

pT

q
= RB, (4.1)

Where R is the radius of curvature and B is the magnetic field.

4.2.2 The Silicon Microstrip Tracker

The silicon microstrip detector, shown in Fig 4.6 is the first detector encountered by particles

produced in the Tevatron collisions. It consists of 6 concentric barrels, 12 cm in length, with

16 interspersed disks (12 F-disks and 4 H-disks) normal to the beam line. Generally, the barrel
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Figure 4.4: The D0 detector system.
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Figure 4.5: A side-view of the complete tracking system
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provides good tracking measurements for transverse particles, whereas the disks are used to measure

the tracks very forward particles.

Silicon tracking systems typically work by measuring the trail of ions left by high energy

charged-particles passing through sheets of silicon, collected on metallic strip contacts. The charge

distribution on these strips provides position resolution in the direction perpendicular to the strips.

By using two, alternating and orthogonal strip directions, spaced at various radial distances from

the beam (in the case of the barrel) or positions in the z-direction along the beam line (in the case of

the disks), we are able to reconstruct a three dimensional track. The DØ SMT has approximately

793,000 such readout channels, and provides an r − φ hit resolution of roughly 10 µm.
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Figure 4.6: The D0 Silicon Microstrip Tracking detector.

4.2.3 The Central Fiber Tracker

Surrounding the SMT (Fig. 4.7) is the DØ Fiber tracking system, which extends radially 20

to 52 cm from the beam pipe and covers up to |η| <1.7. The SMT detector consists of two layers

of scintillating fibers, one set along the axial direction to provide the φ coordinate, and the outer
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layer consists of two layers of “stereo” fibers set at ±3 degrees to help resolve the η coordinate of

a track. Each ionizing particle produces around 10 photons, on average, which are then detected

by a Visible Light Photon Counter (VLPC) which converts the light into an electrical signal.
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Figure 4.7: A side-view of the D0 Central Fiber Tracking detector.

4.2.4 Preshower Detectors

With a great deal more material in front of the calorimeter in Run II, a new detector

subsystem was introduced, just in front of the calorimeter, to recover some of the shower energy

before the cryostat wall. The pre-shower detectors consist of lead radiator, 1 X0 thick at normal

incidence, and triangular scintillator strips to sample the shower energy. The central preshower

(CPS) [54] covers |η| <1.3 and the two forward preshowers (FPS) [55] cover |η| <2.5. Unfortunately,

signals delivered to the electronics for this detector subsystem saturated during the Run IIa period

over which the data for this analysis was collected [46]. Consequently, the preshower is not used

in this dissertation.

4.2.5 Calorimeter

The D0 calorimeter is a sampling calorimeter [56]. Thick plates of Uranium alternate with

active layers of liquid argon, containing signal boards to collect charge. Energetic particles passing
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through materials tend to produce cascading showers of secondary particles. In the calorimeter,

the formation of these showers is driven by the dense, uninstrumented Uranium layers, while the

active layers of liquid argon measure discrete “samples” of the showers at various stages of their

development. We calibrate the calorimeter so that we can recover a measurement of a given

particle’s total energy from the portion of that energy sampled in the liquid argon. We can use

Monte Carlo simulations of shower development, along with test beam data and in-situ Z → ee

data, to determine the appropriate layer weights and proportionality constants necessary to perform

this conversion from layer signals to proper energy [67, ?].

A typical unit cell of the calorimeter, shown in Fig 4.10, consists of a alternating layers of

absorber material and signal boards separated by a 23 mm liquid argon gap. Charged particles

produced from the showering in the Uranium drift through the liquid argon to the signal boards,

kept at 2.0 kV with respect to the grounded absorber plated. The sizes of the unit cells are designed

to compare with the transverse size of showers, ∆R∼0.2 for electromagnetic showers and ∆R∼0.5

for hadronic showers.

There are three distinct calorimeters, each housed in a separate cryostat. The central

calorimeter or CC, which covers |η| <1.1, and two“end-cap” calorimeters for the forward region

1.5< |η| <4.2. An “inter cryostat detector” (ICD) is located in the two massless gaps between the

three calorimeters, covering 1.1< |η| <1.4, to recover shower energy that would otherwise be lost

in that region. In this analysis, we exclusively use central electrons. The "ET is measured using

both the CC and EC calorimeters, and the ICD is not used.

Longitudinally, the calorimeter is divided into three regions: electromagnetic (EM), fine

hadronic (FH), and course hadronic (CH). These regions each use different absorber materials:

pure depleted Uranium for the EM, Uranium-niobium alloy (%2) for the FH, and either copper

(in the CC) or stainless steel (EC) for the CH. Each of these regions are further divided into

multiple layers, each with its own unit cells. The EM calorimeter consists of the first four physical

layers, the fine hadronic is three layers thick, and the last layer corresponds to the course hadronic

calorimeter.
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Figure 4.8: A 3-dimensional view of the D0 calorimeters.
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CC

Figure 4.9: A side-view of one quarter of the detector, showing the projective tower structure in η

and depth. The lines extending from the center of detector correspond to constant pseudorapidities.
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Figure 4.10: The schematic view of a typical unit cell, showing the gap structure, grounded absorber

plates, and read-out boards.
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Figure 4.11: Map showing the configuration of calorimeter cells as a function of detector η and

depth.
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Each of these layers is further segmented into towers in η and φ. The precision towers divide

the central calorimeter into 64 segments in the φ direction and 72 segments in η. The third physical

layer [EM3] of the precision tower is further divided into four (2x2) cells for better shower shape

information where the shower maximum was in Run I. The calorimeter is also divided into trigger

towers, which are 2x2 arrays of precision towers, dividing the calorimeter in 32 segments in phi,

and 37 in eta. Trigger towers are the smallest calorimeter units seen by the Level 1 Trigger. [43]

4.2.6 Calorimeter Electronics

The faster bunch crossing interval (132 ns) of Run II necessitated faster readout electronics.

Our precision measurements, nonetheless require low-noise and uniform performance from channel

to channel.

The signal from calorimeter readout channels is triangular, with a very fast rise time and

400 ns decay time. This signal passes through a pre-amp which converts the charge to a voltage.

The output signal approximates a step function with 400 ns rise time and 15 µs fall time. This

signal is then sent through a filter/shaper that shortens the signal to a 320 ns rise time and 500 ns

decay. This signal is sampled every 132 ns and the discrete sample signals are stored in switched-

capacitor arrays (SCA’s), which serve as analog memory. Because residual signal from previous

bunch crossings may remain in the electronics, the signal from the SCA’s passes through baseline

subtraction (BLS) boards, which measures the difference in voltage between the nominal signal

and the last sample of the previous signal. The baseline-subtracted signal is stored in the level-2

SCA’s, and on a positive trigger decision this signal is finally converted to a digital signal by ADC

(analog-to-digital converter) cards.

4.2.7 Muon System

Muons produced with momenta higher than 1 GeV at Tevatron collisions are minimum

ionizing. These massive, high-energy particles with large mass-to-charge ratios deposit a roughly

constant and minimal amount of energy when passing through materials. As a consequence, they

are among the only particles to penetrate past the calorimeter system. The muon system is the
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Figure 4.13: Typical signal shapes and various stages of the electronic readout.
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outermost subsystem of the D0 detector, designed to help identify muons and to provide additional

tracking and momentum measurements.

The muon system consists of three layers, arranged with a rectangular geometry, with an

iron toroid between the first and second layer. The toroid bends the muon trajectories and the

deflection angle measured between the first and second layers can be used to determine the muon

pT. The first two layers (A and B) are proportional drift chambers. Drift chambers consist of

vessels filled with gas and a wire anode. Charged particles ionize the gas, and the electrons drift

towards the anode. The drift time is use to resolve position within the tube. The outermost layer

(C) consists of scintillating pixels, used for triggering and position measurement.

Because this analysis uses the electron decay channel of W and Z events, we do not really

use the muon system, although cosmic muons were used to study detector alignment.

4.2.8 Luminosity Counters

The luminosity monitors are used to detect inelastic pp̄ collision. Positioned in the far-

forward region of the detector, this system consists of 24 plastic scintillating wedges at z = ±

140 cm from the center of the D0 detector, radially surrounding the beam pipe and covering

2.7< |η| <4.4. The luminosity monitor is used to measure the instantaneous luminosity in the

detector. For the parameterized recoil model, the instantaneous luminosity is used as a parameter

to describe the activity in the detector due to additional collisions, beyond the collision which

produced the W or Z bosons.
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Chapter 5

Optimizing the RunII Detector

Upgrades to the DØ detector in Run II have introduced a great deal more material in front of

the calorimeter, along with new electronics, shorter integration times, and tighter zero-suppression

cuts. Consequently, Run II detector performance differs greatly from Run I, when many of our

analysis techniques were developed. The new inner tracking system with its 2T solenoid and pre-

shower detector, combined with material like the cryostat wall that was already present in Run

I, total 4.0 radiation lengths of material before the first active layer of liquid argon [44]. In this

chapter we discuss some of the calibrations and measurements undertaken to improve and better

understand detector performance.

5.1 Calibration

The effects of physical and electronic non-uniformities in the calorimeter limit our ability

to make precision measurements in Run II. Miscalibrations in the towers and cells of our finely

segmented calorimeter have the effect of smearing the average energy resolution of the detector.

This effect on our resolution corresponds to the “Constant Term” in traditional parameterizations

of detector resolution, as will be discussed in Chapter 7 of this thesis. Since the effect of mechanical

non-uniformities on the fractional resolution is energy independent, they are the dominant smearing

effect for high energy electrons. Moreover, extreme outliers among miscalibrated segments of the

calorimeter introduce measurable, non-Gaussian effects that could also affect precision physics. The

calibration process consists of two parts: calibration of the readout electronics, and calibration of

the mechanical variations in the detector.

The electronics calibration consists of sending a pulse of known charge into the readout,

and observing the measured charge. Since the pulser signal is inserted between the calorimeter

and the electronics, reflections off of the calorimeter return to the readout and alter the shape and
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behavior of the pulse, thereby affecting the accuracy of the electronics calibration. Simulations of

these reflections are still needed in order to fully understand and compensate for these differences.

The technical details of the electronics calibration can be found in reference ??.

The “gain calibration”, which corrects for physical variations in the detector, involves ad-

justing the relative weights of the smallest possible calorimeter segments until their actual energy

responses match their expected responses to within our desired precision. All of our calibration

methods assume a proportional energy response in the calorimeter. Therefore, any non-linearities

that remain after the electronics calibration cannot be corrected by the methods presented in this

paper.

The best standard candle for absolute calibrations is the Z-peak, which is well known and

provides relatively high statistics. In 1 fb−1, one will typically find approximately 20,000 central

Z-candidates after background subtraction [88]. Nonetheless, we still lack sufficient statistics to

use the Z-peak alone for calibrating at the tower level or finer. We need a more inclusive sample

to increase our statistical power. We proceed as follows:

1. We expect a uniform calorimeter response in φ, since the beam physics of the Tevatron is not

polarized. We look at generic collider events with EM energies above a threshold, and adjust

the weights of calorimeter segments in φ-rings of fixed η to achieve a uniform relative response

in that direction. This process is called “intercalibration” or “inter-phi calibration.” Enough

data was collected to intercalibrate the CC region to within one percent on a precision tower

basis and to within 2% on a layer level.

2. Once we have eliminated the φ degree of freedom, we have enough Z → ee events to absolutely

calibrate each intercalibrated η ring.

Using this procedure we have succeeded in providing calibration constants on the precision-

tower level in the EC region and on a per-layer basis in the CC region. These calibration constants,

along with an independent electronics calibrations have been implemented into the p17 release

series of the D0 offline reconstruction program.
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5.1.1 Intercalibration In φ Using Generic Collider Data

At the precision tower level, we equalize the occupancy of events above an energy cut L for

each tower. Monte Carlo studies have shown that little statistical power is gained by using shape

information. Each tower i in the φ-ring has its transverse energies Ei corrected by a multiplicative

constant:

ET
i′ = αiET

i. (5.1)

The parameters, αi are adjusted so that the number of events with the energy E′
i above Li

for each tower is equal to the average occupancy over all towers in the ring.

We also calibrate each of the four physical layers [EM1,EM2,EM3,and EM4] within each

precision tower. The basis for our physical layer calibration is a fit each layer’s unique fraction of

the total tower energy. The first of the four layers is kept at a fixed calibration of unity, and the

relative calibrations, β2
i , β3

i , and β4
i of the other three layers are adjusted so that the distribution

of fractional energy in a particular layer of a particular tower matches the shape of the average

distribution for that layer over all φ.

Figures 5.1 and 5.2 show an example of the energy fraction distributions for the layers of a

tower compared to the averaged reference distributions, before and after calibration.

Minimization is performed by the SIMPLEX algorithm of MINUIT [37], an iterative search

method that is available in the CERN program library.

The challenge with combining the tower and layer intercalibrations is that the tower calibra-

tion can move events in and out of the offline cuts, changing the final value of the layer calibrations

and vice versa. As a result, one iteration of the intercalibration process does not produce stable,

self-consistent constants. Rather, only after many iterations of the calibration procedure do the

fluctuations from the two independent calibrations (layer and tower level) dampen and converge to

fixed values. Experience has shown that 30 iterations of the calibration procedure is a safe number

to insure convergence to stable set of constants.
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Figure 5.1: Comparison between the four EM fraction distributions of an uncalibrated tower

(points) and the average distributions for the eta ring (solid)

5.1.2 Absolute Calibration of Rings in η Using Z → ee data

Absolute calibration of the rings in η is performed using a Z → ee sample. Multiplicative

calibration constants ciη(j) on the raw energies for electrons that fall in the given φ-ring of fixed

iη = j. We apply these constants to the raw electron energies in each, and compute the invariant

Z boson mass, given by

mi
Z = Ei

elec1E
i
elec2(1− cos δθ) (5.2)

where Ei
elecj is the reconstructed electron energy for the jth electron in the ith event after applying

various material-based and geometric based energy-loss corrections to the raw-energies, which are

given by

Ei
elecj = Ei

elecj(ciη(j)Erawi
elecj ,α), (5.3)
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Figure 5.2: Comparison between the four EM fraction distributions of an uncalibrated tower

(points) and the average distributions for the eta ring (solid), after calibration

and α is the array of parameters for those energy loss corrections.

The invariant mass distribution of these mi for all events i, should approximate a voigtian

distribution with central value equal to the experimentally known Z boson mass MZ and width

determined from full MC expectations of the detector resolution, combined with the appropriate

backgrounds.

We adjust these calibration constants ciη(j) and recompute the invariant mass distribution

until the central value approaches the LEP Z boson mass value and the width of the distribution

is minimized to the full MC predicted resolution.

We do this for the first 26 iη values, and c27 corresponding to 27 ≥ |iη| ≤ 37.
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5.1.3 Result of Calibration

Resulting temperature plots of the layer level calibration are shown in Fig 5.4. The effects

of physical non-uniformities can be seen. For example, the red band tower calibration constants for

φ =34,35 in the first to layers, correspond to a known bend that occurred in the assebly φ-module

17 of the calorimeter.

The final effect of applying these calibration constants was a 10% improvement in the

resolution of the Z boson invariant mass distribution, which is now close to the 2% precision

the detector was designed for. The Z boson invariant mass distributions before and after the

calibration are shown in Fig 5.5.
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Figure 5.3: Result of the calibration fit to data. The horizontal axis represents ieta and the vertical

axis represents the fit result for cieta(j). The grey areas show regions in which we do not attempt to

determine cieta(j). The point at ieta = −27 represents the combined cieta(j) for −37 ≤ ieta ≤ −27,

and the point at ieta = 27 represents the combined cieta(j) for 27 ≤ ieta ≤ 37 (see text). The

triangles represent the result for data taken before the Sept-Nov 2003 shutdown, and the dots

represent the result for data taken after that shutdown.
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Figure 5.5: The Width of the Z-peak for two CC elections, before (top) and after (bottom) the

in-situ calibration was performed. Resolution improves by roughly 10%.
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5.2 Energy Loss Corrections

With so much material in front of the calorimeter in Run II, the actual energy response of

the detector is very non-linear. For example, one would not expect the energy of a 5 GeV electron

passing through the roughly 4 X0 of dead material before the first active layer to be proportional

to the energy response of a 30 GeV electron. geant-based energy loss corrections based on our

best material description of the calorimeter are applied to our reconstructed electron energies to

linearized the energy response.

5.3 Material Studies

Studies using GFLASH [68], a parameterized shower simulation suggest that this new ma-

terial has changed the nature of the detector’s EM shower development and, with it, the sampling

resolution. Figure 5.6 shows the average shower development as a function of depth produced

using a simple parameterized shower simulation. Two major features stand out. First, much of

the energy at the beginning of the shower is lost in dead material. Second, the shower maximum

is no longer entirely contained in EM3 as it was in Run I. Figure 5.7 shows the longitudinal shower

development of 10 individual showers at two different pseudorapidities. Not only does the longitu-

dinal profile fluctuate event-by-event, but the nature of those fluctuations is different for the two

angles of incidence. This implies an angular dependence of the sampling resolution not present

in the Run I parameterization of resolution. Figure 5.8 shows 10 fluctuations as measured at two

different fixed energies. These fluctuations show a strong dependence on energy, as well.

These new angular and energy dependencies would render past parameterizations of the

calorimeter resolution obsolete. Using Run II geant Monte Carlo, we have re-examined the

energy and η dependence of the resolution. The results of these detector simulations are markedly

different from those of our Run I parameterization Figure 5.9 shows the eta dependence of the

energy resolution for single electrons in geant. Figure 5.10 shows the energy resolution due to

sampling fluctuation as a function of energy for single CC electrons in geant. We compare these

points with a Run I model, and find that the energy dependence of the resolution is much different.
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These new dependences have motivated the development of a new parameterized model

for the energy resolution of electromagnetic particles, described in depth in Chapter ??. This

parameterization contains too many degrees of freedom to tune to our limited data observables

alone. Instead, we tune this model to the geant-based, full detector simulation. However, we

must first make sure that the material description of our detector in geant matches the true

composition of detector. Indeed, observed disagreements between the data and full Monte Carlo

suggest that there is material missing from the detector model.

We must therefore first measure exactly how much material is missing from the full MC

model, add that missing material onto a special, corrected full geant model, and use the modified

sample to tune the parameterization.
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Figure 5.6: The average energy deposited at a function of depth (in radiation lengths) for 45 GeV

single-electrons at normal incidence, as estimated using a parameterized shower simulation.

We would like to understand both the energy dependence and the angular dependence of

the resolution, due specifically to the material in the detector. We look at two samples: Z → ee

decays and J/ψ → ee. Since these two samples contain two electrons, each with its own pseudo-
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Figure 5.7: The energy deposited at a function of depth (in radiation lengths) for 45 GeV single-

electrons at normal incidence (left) and η = 1.0 (right) as estimated using a parameterized shower

simulation. Each line represents one particular shower drawn from a parameterized model for

shower fluctuations [68]. One clearly sees the shift of the shower earlier in the calorimeter as the

angle of incidence increases.

rapidity, we cannot measure resolution directly as a function of angle. Rather, we divide our data

into kinematic categories corresponding to the various permutations of |ηphys| of both electrons.

We start by dividing |η| into five bins. Table 5.1 shows the eta ranges corresponding to each bin.

Then, we define our fifteen categories as a numbering system for all of the unique combinations of

two-electrons in these two bins. For example, category 11 represents one electron in bin 1 and one

electron in bin 2. Similarly, category 12 refers to one electron in bin 1 and one electron in bin 3.

The numbering convention for these categories is described in Table 5.2 below.

The J/ψ → ee resonance, is at low enough energies that the resolution is dominated by

material effects on the energy sampled. Although the decay electrons of the J/ψ do not cover a

large enough energy range to explore the energy dependence of the sampling resolution, we can still

examine the dependence on incident angle. And, when combined with similar resolution studies

at the Z resonance, we can build a more complete description of the calorimeter resolution.

We produce template distributions of the measured J/ψ resonance, at varying sampling res-

olutions, and use these templates to fit for the sampling resolution as a function of the kinematic

categories in ηphy. Template production starts with generated J/ψ → ee events and generated
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Eta Bin Physics Eta Range

0 0. to 0.2

1 .0.2 to 0.4

2 0.4 to 0.6

3 0.6 to 0.8

4 more than 0.8

Table 5.1: The five bins into which we divide the |ηphys| of central electrons

Category Electron 1 Bin Electron 2 Bin

10 0 0

11 0 1

12 0 2

13 0 3

14 0 4

15 1 1

16 1 2

17 1 3

18 1 4

19 2 2

20 2 3

21 2 4

22 3 3

23 3 4

24 4 4

Table 5.2: Definitions of the kinematic categories in |ηphys| that we use to label CC-CC dielectron

events
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Figure 5.8: The energy deposited at a function of depth (in radiation lengths) for 45 GeV (left)

and 5 GeV (right) single-electrons at normal incidence. Each line represents one particular shower

drawn from a parameterized model for shower fluctuations [68]. One clearly sees the large shift

of the shower earlier in the calorimeter at lower energies.

events corresponding to the nearby ψ(2s) resonance. These two resonances, along with a generic

background are combined in the proper proportions, as measured using data with tracking infor-

mation. Because the low pT decay electrons from the J/ψ sit close to our trigger turn-ons at D0, a

sophisticated trigger-efficiency model is also necessary. Finally we apply a simple detector model

to produce J/ψ → ee at various values of the sampling resolution. Since energy scale and offset

were not applied, we also kept a floating energy offset and fit our data with a 2-parameter fit to

templates that very in both resolution and energy offset, although we ignore the offset value.

Figure 5.11 shows the fit to a J/ψ → ee sample over all kinematic categories, using our

model. Although the shape is complicated and non-gaussian, we are able to accurately reproduce

its key features. We measure the sampling resolution versus kinematic categories in η in two

different data-sets, corresponding to different trigger definitions. We ultimately use the results

from the measurement of what we call the “trigger-low” data set, and use the “trigger high” set as

a cross-check. Figures 5.12 shows the results for the “trigger low” set, with overall and statistical

error bars. A more in-depth treatment of this measurement can be found in []. The average

sampling resolution over all categories is much larger than predicted by geant, suggesting that

indeed there is more material in the real detector.
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sinθ dependence.

The equivalent measurements of the total electron resolution in Z → ee data for the various

kinematic categories in shown in Fig ??. The same features and kinematic resolution dependencies

are seen in the Z data as in the J/ψ data.

We fit for missing material in the geant model by simultaneously comparing the fractional

energy in each of EM layers of the detector for all bins in |iηdet|. We adjust the amount of

unknown material until the longitudinal shower develop versus η of the full MC matches that of

the data. We suspect that the missing material comes from a slight mis-estimate of the thickness

of bulk material in the detector, likely the solenoid coil, which is difficult to model but nonetheless

cylindrical and uniform in η. Copper is chosen as the material to vary. Comparisons using our

J/ψ and Z measurements, after the missing material is inserted, show that this assumption gives

very good data agreement for many different kinematic categories and two different energies.
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E dependence and the solid line is a fit using

the new parameterization described in Chapter 7.

Figure 5.13 shows the fit result for missing material. Figure 5.14 shows the fit result for

missing material in each layer of the calorimeter independently. Event fitting based on the frac-

tional energy distribution in each individual layer gives consistent results. We find that is missing

material consistent with the equivalent of a uniform, cylindrical distribution of copper equivalent to

a thickness in radiation lengths of nX0 = 0.1633± 0.0095. Figures ??-?? show various comparison

plots between data and MC before and after the missing material is added back in.
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Figure 5.11: Fit result to the J/ψ resonance in “trigger low” data.
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Chapter 6

Event Selection

6.1 Data

The W mass and width measurement discussed in this dissertation use data samples from

a run period generally referred to as Run IIa. These data were collected between July 26th

2002 and July 22nd 2006, between the run numbers 160582 and 215670, and comprise roughly 1

fb−1 of integrated luminosity. Our samples are obtained from the Common Sample Group’s “EM

Inclusive” skim. In addition to the W → eν sample used for our W mass and width fits, we heavily

rely on a sample of independent, but kinematically similar Z → ee events for detector calibration

and Monte Carlo tuning, and an “EM + jet” sample to study the probability of a jet faking an

electron.

6.2 Triggers

The collision rate of 2.5 MHz produces data at a much higher bandwidth than the DØ data

acquisition system can write to disk. To reduce this rate to manageable levels, we use the three-

tiered trigger system to make low-level decisions regarding what collisions are most interesting.

The recorded data used in this analysis are collected from events that pass a combination

of single EM trigger conditions. As luminosity increased, these conditions had to be modified to

accommodate new run conditions. The trigger list for the W → eν and Z → ee data sets is divided

into four periods. Table 6.2 shows the trigger definitions used for this analysis.

6.3 Track and Vertex Reconstruction

SMT and CFT hits are used to reconstruct the trajectories of charged particles in the

detector, as well as the vertex from which they originate. The quality of a track is determined by
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a χ2 fit of a track to nearby SMT and CFT hits. The track finding algorithm first looks for track

segments in each layer, before matching these segments to a global track.

The interaction points of a given event are called the “event vertices”. There are two kinds

of event vertex, “primary” and “secondary”. The primary vertex, as its name implies, refers to

the original point of interaction, and has the largest number of track originating from it. In the x̂

and ŷ directions, the plane orthogonal to the beam direction, the primary vertex is typically close

to the origin, since the cross-section of the beam is small (≈ 40 µm). In the ẑ direction along the

beamline, however, the location of the vertex can vary significantly, with mean ẑ component close

to zero, but RMS close to 30 cm. A primary vertex must contain at least 3 good tracks, each with

at least one hit in the SMT. The secondary vertex is a displaced vertex with fewer tracks, due to

the decay of a long live meson such as the B, Ks, or D, and only requires two tracks. Secondary

vertices are not used in this analysis. More detailed treatment of tracking at DØ can be found in

References [].

6.4 EM Reconstruction and Clustering Algorithm

EM showers are found using a “simple cone” clustering algorithm that searches through a

list of the calorimeter trigger towers (0.1×0.1 in η×φ) with the highest EM energy. The EM energy

of a tower is defined that the energy in the first four “EM layers”, and the fifth, “course hadronic”,

layer of the calorimeter. The highest energy tower is selected as the seed in a pre-cluster. Adjacent

towers above a 50 MeV threshold and within a 5×5 window in iη × iφ are added onto the seed

tower. The centroid of the cluster is recomputed and used as the new cluster seed. The process is

repeated until the centroid becomes stable. The cluster energy is then calculated from all of the

cells in the cone.

6.5 "ET Reconstruction

The raw missing ET is constructed as a vector sum of all calorimeter cells above the zero-

suppression threshold. Once we have identified good EM clusters, electron energy corrections are
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applied and the "ET is recomputed.

6.6 Particle Identification

Electrons in our data are identified as isolated showers of EM energy with pT >25 GeV

and pseudorapidity |ηdet| <1.05 that conform to shower shape criteria and match a track in our

tracking system. In the following section we describe these criteria in more detail.

Electrons must pass a basic isolation condition. For electrons, we require fiso <0.2, where

isolation is defined as:

fiso =
Econe − Ecore

Ecore

The EM fraction, fEM is defined as the ratio of shower energy in the EM layers of the

calorimeter to total energy in the cluster, and is must be above 0.90 for electrons.

The H-Matrix is a shape-based discriminant used to distinguish between electron showers,

and those of other particles in the calorimeter. In the central calorimeter, we use a 7×7 covariant

matrix to compare calorimeter showers with those of Monte Carlo electrons in our full detector

simulation, based on 7 variables: the fractional energies in the first four EM layers, shower width

in the η direction, the logarithm of the cluster energy, and location of the primary vertex. The

H-Matrix is the inverse of this matrix and gives a χ2 for the comparison between that calorimeter

shower and typical full MC electron showers. Thus, the lower the H-Matrix value, the more

electron-like the shower. For the CC electrons used in this analysis, we equire Hmx7<12.

Good electrons must have pT >25 GeV and pseudorapidity |ηdet| <1.05. In addition, we

exclude the edges near module boundaries of the calorimeter to avoid edge-effects.

We require the electrons to match hits in SMT and CFT, with track pT >10 GeV matched

to an EM cluster to within 0.05 in eta and phi. The quality of the match is given by

χ2 = (
∆φ

σφ
)2 + (

∆z

σz
)2 (6.2)

Where ∆φ and ∆z are the difference between the electron centroid in the calorimeter and
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the track extrapolated to the third EM layer, and σz and σφ are the measured resolutions.

6.7 Offline Selection

The final offline selection criteria are given in Tables 6.7 and 6.7. After all selection criteria

are applied there are 18,725 Z → ee events and 499,830 W → eν events left in the D Run IIa

sample.
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Trigger L1 L2 L3

EM HI SH CEM(1,10) EM(1,12) for runs>169523 ELE LOOSE SH T(1,20)

E1 SHT20 CEM(1,11) none ELE NLV SHT(1,20)

E1 SHT22 CEM(1,11) EM(1,15) ELE NLV SHT(1,22)

E1 SHT25 CEM(1,12) EM(1,15) ELE NLV SHT(1,25)

L1 triggers

CEM(1,10) one EM trigger tower ET > 10 GeV

CEM(1,11) one EM trigger tower ET > 11 GeV

CEM(1,12) one EM trigger tower ET > 12 GeV

L2 triggers

EM(1,12) one EM candidate with ET > 12 GeV (not present for runs below 169523)

EM(1,15) one EM candidate with ET > 15 GeV

L3 triggers

ELE LOOSE SH T(1,20) one electron with |η| <3.0 and ET >20 GeV passing loose requirements

including shower shape

ELE NLV SHT(1,20) one electron with |η| <3.6 and ET >20 GeV passing tight shower shape

ELE NLV SHT(1,22) one electron with |η| <3.6 and ET >22 GeV passing tight shower shape

ELE NLV SHT(1,25) one electron with |η| <3.6 and ET >25 GeV passing tight shower shape

Table 6.1: Single EM triggers used in this analysis.
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W events must satisfy:

• Event must have one tight, CC electron;

– pT > 25 GeV;

– Hmx8 < 20;

– EM fraction > .9;

– isolation < 0.15;

– |ηdet| < 1.05 ,where |ηdet| is evaluated in EM3;

– matching track;

• Event must have corrected MET > 25 GeV;

• Event must have a recoil pT < 15 GeV;

• Event must have a transverse mass between 50 GeV and 200 GeV;

Z events must satisfy:

• Event must have two tight electrons, at least one in the CC;

– pT > 25 GeV;

– Hmx8 < 20, or Hmx7 < 12;

– EM fraction > .9;

– isolation < 0.15;

– |ηdet| < 1.05 , or |ηdet| is between 1.5 and 2.3, where |ηdet| is evaluated in EM3;

– matching tracks;

• Event must have a recoil pT < 15 GeV;

• Event must have a transverse mass between 50 GeV and 200 GeV;
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Chapter 7

Electron Measurement and Simulation

In this Chapter we explore those detector effects involved in electron measurement, and the

parameterized model we use to simulate them.

In data and full Monte Carlo, reconstructed electrons correspond to clusters of energetic cells

in the calorimeter. These clusters cover a 0.5 × 0.5 region in η × φ and the first five calorimeter

layers. The precision and accuracy of electron energy measurements is limited by the granularity

and finite calibration of the segments in these clusters, as well as contributions from additional

activity in the detector.

7.1 Electron Energy Measurement

The measured energy of an electron is described by the following equation:

EMeas = (αETrue + β)⊕ σEM (ETrue, η) + ∆u||(u||, L) (7.1)

A linear form consisting of an energy scale, α and offset β is used to describe the energy

response of the detector to an electron at a given true energy. This energy is then smeared with a

gaussian resolution σEM that depends on the energy and pseudo-rapidity of the electron. Finally

a correction ∆u|| is applied to account for contributions to the measured electron energy from the

hadronic recoil and additional activity in the detector.

7.1.1 Parameterized Energy Response

We adopt a linear model to describe the overall EM energy response of the calorimeter,

which accurately describes the detector behavior as observed in collider and test beam data. The

measured energy is related to the true energy by the following equation:
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EMeas = αETrue + β (7.2)

We tune this model to observables found in Z → ee data. One observable that we use

is the known location of the Z mass peak itself. However, since the energy scale and offset are

strongly correlated, we need further constraints to separate the two terms. The reconstructed

Z mass distribution ignores the pT spectra of the constituent decay electrons. Knowing that

these electrons are not mono-chromatic, we construct another observable to provide additional

information in constraining our scale and offset fit.

fZ =
Etrue(e1) + Etrue(e2)

Mtrue(Z)
(1− cosθ) (7.3)

This new observable, fZ relates the mass of the energy scale and offset with both the

measured mass and the pT spectra of the two decay electrons.

Mobs = αMtrue(Z) + βfZ + O(β2) (7.4)

The final fit for α and β is a 2-parameter fit to minimize the χ2 between both the central

values and resolutions of the Z mass for bins of fZ . This profile plot in Fig 7.2 shows an example

of the profile plots used in the χ2. Figure 7.1 shows the 2-dimension distribution of fZ versus mZ

from which the profile is derived.

7.1.2 Parameterized Energy Resolution

Traditionally, we describe the fractional resolution of the calorimeter using a parameteriza-

tion with three primary terms, corresponding to the different contributions to the precision of our

EM energy measurement:

σ

E
=

√
N2

E2
+

S2

E
+ C2. (7.5)

N represents the noise term. This term describes resolution effects due to electronics noise, latent

radioactivity from the Uranium, and underlying events. The fractional resolution effects due to
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the noise term are proportional to 1/E and are therefore insignificant at high energies. C is the

constant term which describes smearing effects due to relative miscalibrations of the calorimeter

η−φ segmentations. This term has a constant effect on the fractional resolution, independent of the

energy, and is therefore the dominant effect at high energies. S corresponds to the sampling term.

Because we only collect only a fraction of the total energy as signal, we are subject to statistical

fluctuations in shower development and punch-through of the inactive layers. The sampling term

describes the resolution effects due to these fluctuations.

It is important to get the energy dependence of our resolution right, because we tune it at

the energy of Z decay electrons and need to extrapolate down to the energy of W decay electrons.

To account for the new dependences of the resolution on incident angle and energy due to

new material in front of the detector, we further parameterize the sampling resolution as a function

of electron energy and ηdet, so the formula for fractional resolution becomes:

σ

E
=

√
N2

E2
+

Snew(E, θ)2

E
+ C2

where,

Snew = S(E, θ) =
(

S1√
E

+ S2

)
eSexp/sinθ

eSexp
(7.8)

and

Sexp = S3 − S4/E − S2
5/E2 (7.9)

These parameters are tuned to the special full MC sample constrained to Z → ee and

J/ψ → ee data, and depend on the amount of “missing material” in our detector model, as

described in Chapter 5.
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7.1.3 Underlying Energy Corrections

Some of the energy we attribute to the electron, is not directly related to the lepton; It

consists of hadronic energy and other detector activity that overlaps with the calorimeter cells

containing the electron. To account for this effect, we must add this ”underlying energy” (∆u||)

onto our simulated electrons, after we smear them parametrically. The underlying energy model

must account for known dependences on pseudorapidity, luminosity, and u||, the projection of the

hadronic recoil along the electron direction. The model should also account for zero-suppression

induced correlations when combining the pure electron with underlying energy contributions.

The underlying energy model used in this analysis is built around a combination of data

measurements and full MC studies. In Z → ee data, we measure the energy in an adjacent 5×5

(iη× iφ) window rotated away from the data electron in φ. This measurement helps to approximate

how much activity we expect beneath the electron for that event (∆UErot). The ∆UErot for each

event is stored in one of 13×13 array of histograms corresponding to 13 bins in luminosity and

13 bins in u||, the projection of the recoil along the electron. Figure 7.3 shows the distribution of

energies in the rotated window over all events. We would expect the mean energy of the 13×13

histograms to increase for higher luminosity bins, since there will be more additional activity in

the detector. Likewise, for higher u|| bins we expect to see higher average energies in a window

near the electron, since more of the recoil system overlaps with the electron. Figure 7.4 shows plots

of ∆UErot as a function of luminosity and u||. The expected dependencies are indeed observed.

∆UErot is a good first approximation of the energy beneath the electron cone. However,

the combined electron and underlying energies will push more cells in the electron cone above the

zero-suppression threshold, increasing the electron response and the effective underlying energy.

To understand the effect, we use single electron full MC, with and without zero-bias overlay, and

with and without zero-suppression. We measure the ∆u|| correction that must be applied beneath

an electron cone as a function of ∆UErot and η.

In the fast MC model used to generate templates, we chose random ∆UErot values from

the appropriate data histograms corresponding to the u|| and instantaneous luminosity of each
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simulated event. Full MC derived functions are used to extrapolate ∆UErot to the actual, zero-

suppressed ∆u|| to be applied beneath the fast MC electron.

 for the rotated position (GeV)TE
0 1 2 3 4 5
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210

310

410

510

610

Figure 7.3: Log plot of the energies in the window of towers rotated to a position azimuthally

adjacent to the electron window.

7.2 Electron Position Resolution

The electron position resolution is described by two parameters in fast MC, ση and σφ

corresponding to the η and φ resolution in the tracking system. These parameters, measured from

cosmic muon events to be ση = 0.002 and σφ = 0.4 mrad, are used to smear the generator-level

directions of electrons.

7.3 φ-mod

The central calorimeter is assembled from 32 separate modules in the azimuthal direction.

Gaps in the signal boards and non-uniform electric fields in these boundaries tend to bias the
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electron clustering algorithm in the calorimeter towards module centers. We reduce this bias with

a fiducial cut of 10% on either side of the module boundaries. This φ-crack cut reduces the overall

acceptance in the azimuthal direction by 20%. Nonetheless, some bias still remains and must be

accounted for in our electron model.

We describe this bias in terms of a variable called φmod, which is given by:

φmod = mod(32φ/2π). (7.10)

which varies from 0 to 1. A φmod value of 0.5 corresponds to the center of the φ modules and

a φmod of 0 or 1 corresponds to module boundaries. We determine the bias by measuring the

difference between the position of the matching track extrapolated from collision point, and the

cluster center of the calorimeter as measured in the EM3 layer. This difference is called the φmod

shift. Figure 7.5 shows a scatter plot of the φmod shift versus φmod for Z → ee electrons in the

calorimeter. Figure 7.6 shows the equivalent profile plot. This bias is applied to the fast MC

model.

7.4 Final State Photon Merging

Decay electrons can emit a photon in the final state. Low energy photons fail to penetrate

the calorimeter and their energy is lost from the electron. However, if the radiated photon has

sufficient energy to reach the calorimeter, one of three things can happen, depending on the energies

of the photon and electron, as well as the proximity of the photon, given by:

∆R(eγ) =
√

[φ(e)− φ(γ)]2 + [η(e)− η(γ)]2, (7.11)

If the photon is sufficiently near to the electron, the two EM particles are seen as a single EM

cluster corresponding to the electron. In this case the reconstructed electron energy reflects the

merged energy of both the electron and the photon, which is equivalent to the energy of the electron

as it would have been reconstructed if it did not radiate a photon. If the photon is sufficiently far

from the electron, it is no longer reconstructed as part of the electron energy but instead added
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on to the measured recoil energy. For intermediate distances between the photon and electron,

the energy of the reconstructed photon can interfere with the isolation and shape-based electron

selection cuts, and the event is thrown away.

Our final state radiation (FSR) model must therefore not only describe the QED effects at

the four-vector level, but also detector effects on the measured kinematics. It must describe the

probability of photons penetrating the calorimeter, the probability that the photon and electron

will be merged, and the probability that the radiated photon will interfere will interfere with

selection cuts and kill the event.

The probability of a photon penetrating the calorimeter comes from the well know properties

of high energy photons passing through matter.

Figure 9.1 shows the electron ID efficiency for bins of ∆R(eγ) as a function of the fraction

of the electron energy carried by the leading FSR photon (Efracγ). The features of these overall

efficiency plots are the result of effects from several different selection criteria. The first several

bins (corresponding to a very close photon) are driven by the track matching requirement. For

the very distant photons of the last few bins, the FSR does not directly interfere with selection

criteria, except that for large Efracγ , so much of the electron energy is lost to the photon that it

begins to fail basic pT cuts. The complicated features for the intermediate ∆R(eγ) bins are driven

by the HMx shower shape requirement, which was optimized for single electrons and not electrons

with nearby photons.

We correct the electron energy by removing the fraction of FSR photon energy lost. This

fraction, κ is defined as

κ =
(Ereco[withFSR]− Ereco[noFSR])/(Etrue[noFSR])

Efracγ
. (7.12)

Figure 7.8 shows the κ fraction as a function of Efracγ for different bins in ∆R(eγ). As we

would expect, for large ∆R(eγ), κ = −1, since all of the photon energy is lost from the electron.
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Figure 7.7: The selection efficiencies for electrons in FSR events as a function of the fraction of

electron energy carried by the leading photon, for bins in ∆R(eγ), proximity of the photon.
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Figure 7.8: The fraction of FSR photon energy lost from the electron as a function of Efracγ for

different bins in ∆R(eγ)
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7.5 Primary Vertex Simulation

In order to calculate the ηdet of a given electron, we need to know both ηphys and the

position of the vertex. Our fast MC method for generated template distributions must model the

vertex distribution observed in data. The shape of the vertex distribution depends on the shape of

the luminous region, which varies as a function of hardware changes and instantaneous luminosity.

We therefore divide the data into 15 epochs that track major changes over time. The vertex

distribution in zerobias data from each epoch is fit with a 3-parameter formula. These 15 sets of

three parameter functions are used to describe the vertex distribution in fast MC as a function of

run number.

7.6 Luminosity and Run Number Simulation

The ∆u|| corrections depend on the instantaneous luminosity, and the vertex model depends

on run number. In fast MC, the luminosity and run number are randomly chosen from a 2-

dimensional histogram storing the luminosities and run numbers of of minbias events taken over

the same run period as the W and Z data.
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Chapter 8

Efficiencies

In this Chapter we discuss the relevant components of the electron selection efficiency model.

In this Chapter we discuss the relevant components of the electron selection efficiency model.

Beside the geometric and kinematic cuts imposed on the data, it is necessary to model the electron

identification (ID) efficiencies. Absolute inefficiencies in our selection of good W → eν events do

not affect the measurement of the W boson mass and width, except by reducing the statistical

power. Rather, our concern is with efficiencies that affect the shape of the relevant distributions by

introducing additional dependencies on kinematic variables such as pT(e), or ηphys. In this section

we discuss electron ID efficiencies.

8.1 Trigger Efficiency

We derive separate efficiencies for the four trigger periods used in this analysis using the

“tag-and-probe” method. We take Z → ee where one electron (the “tag”) is required to pass all of

our strict selection cuts and the other electron (the “probe”) need only pass a loose requirement

that is uncorrelated with the selection criteria being tested. We then study whether the probe

electron passes the particular selection cut being tested. Figure 8.1 shows the trigger selection

efficiencies for the four different trigger periods.

8.2 Preselection Efficiency

Preselection is defined as the efficiency for an EM cluster passing isolation (0.15) and EM

fraction (0.9) cuts. The preselection is also measured using tag-and-probe, where the probe is only

required to match a track with track pT > 15 Gev. The resulting efficiency, shown in Fig 8.2 as a

function of ηdet, is almost flat over the region used in this analysis (|ηdet| <1.05).
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Figure 8.1: The trigger efficiency versus electron pT for four different run trigger periods: v11

(upper left), v12 (upper right), v13 (lower left, and v14 (lower right).
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8.3 Track Matching Efficiency

The track matching efficiency is determined from data, again using the tag-and-probe

method, as a function of ηphys, vertex position, and electron pT. Figure 8.2 shows this efficiency

as a function of vertex and ηdet. The large drop in efficiency at 40 cm is due to the requirement

that electron match tracks observed in the SMT system.
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Figure 8.2: The tracking efficiency as a function of η and vertex z position shown as a lego plot

(left) and a box plot (right)

8.4 EMID (Hmatrix) Efficiency

Once an EM cluster has passed the preselection cuts, shower-shape cuts are made on the

Hmatrix (described in Chapter 6). The η dependence of the Hmatrix efficiency is measured using

tag-and-probe. The pT(e) dependence is determined using a sample of single-electron full MC,

taking the ratio of electrons that pass all ID cuts to those electrons that pass preselection. These

efficiencies are shown in Fig 8.3 and used as inputs to the fast MC model.
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Of course the full MC sample used to measure the Hmatrix efficiency consists of lone elec-

trons. In Z → ee and W → eν events the presence of other activity in the detector - particularly

hadronic activity from the recoil system - interfere with the Hmatrix efficiency. These effects are

accounted for in our u|| and SET efficiency models, described in the following sections.
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Figure 8.3: The Hmatrix efficiency versus ηdet

hmtrkeffdetetaData.eps

8.5 φmod Efficiency

In addition to the observed φmod shift, described in Chapter 7, the selection efficiency for

electrons decreases close to φ-module boundaries. We determine this efficiency with tag-and-probe

studies, using extrapolated track positions to determine the proximity of the electrons to module

boundaries. Figure 8.4 shows the measured φmod efficiency.
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Figure 8.4: The distribution of MZ vs. fZ in full Monte Carlo events.

8.6 u|| Efficiency

Electron reconstruction and identification is significantly impacted by the proximity of the

recoil to the electron. The larger the quantity of hadronic energy that lies along the direction of

an electron, the less likely that electron will pass electron isolation or shower-shape requirements.

This effect is modeled in the parametric efficiency model as a function of u|| the projection of the

recoil along the electron direction.

The u|| efficiency is described by a plateau and a negatively sloping line that meet a “kink-

point” on the u|| axis. For u|| values below the kink-point, the recoil and electron are spatially

separated enough that the electron id efficiency is unaffected by the recoil. After the kink-point,

electron selection efficiency drops as the overlap between the electron and recoil increases. The

absolute level of the plateau is not important, as it has no bearing on the shapes of relevant W

boson observables. The location of the kink point is taken directly from truth-level full MC studies.

However, the slope of the u|| efficiency is affected by the SET efficiencies and FSR, which we model
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independently in fast MC. Therefore, it cannot be extracted directly from full MC and we must

proceed as follows. Once we fix the SET efficiency model (described in the next section), FSR

model, and kink point, the slope of the u|| efficiency is adjusted so that the overall pT dependent

efficiency between full MC and fast MC match. The fitted slope is roughly one-third of the slope

measured directly from full MC. We call this process “double-counting removal”, since we are

removing the common pT dependences between the independent SET, u||, and EMID efficiency

models in the fast MC. Both the kink-point and slope are measured independently for W and Z

events.

8.7 SET Efficiency

After applying all other efficiencies, there is an observed discrepancy between the scalar ET

spectra in data and full MC. This discrepancy suggests an unmodeled electron selection dependence

on the scalar ET (SET), which quantifies the total hadronic activity in the detector. The SET

efficiency describes the probability of electron identification as a function of all non-leptonic energy

in the detector. With more hadronic activity in the detector, the probability of finding a good

electron will diminish.

The overall SET efficiency is derived in full MC Z → ee events, exploiting truth information,

to obtain an overall event reconstruction efficiency as a function of SET. To whatever extent the full

MC does not properly model the SET spectrum in data, tag-and-probe based data corrections are

expected to fix the model. These corrections will be described in the next sub-section. Figure 8.6

shows the overall SET efficiency as a function of scalar ET. The SET efficiency differs for Z → ee

and W → eν events, since the Z → ee data require two good electrons.

One would expect this effect to be more severe for low pT electrons than for those with high

pT(e), since the electron energy is less significant compared to the background activity. This effect

is particularly important for the ΓW measurement, since events in the tail of the MT distribution

typically have higher average SET, but also have higher electron pT spectra. An overall SET

efficiency with no consideration for electron momenta would model the tail less efficiently than one
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Figure 8.5: The u|| efficiency for Z → ee (top) and W → eν (bottom) events for full (black points)

and fast (blue points) MC. Good agreement is found.
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Figure 8.6: The overall reconstruction efficiency as a function of SET for W and Z events.

would expect in data. Corrections based pT(e) are applied to modify the overall SET efficiency.

These corrections are derived from polynomial fits to comparisons between fast and full MC for

bins of electron pT bins. Figure 8.7 shows these correction functions. Overall normalization factors

are applied to the respective pT(e) bins, so that the overall SET efficiency averaged of the pT(e)

spectrum remains the same with the perturbations applied.

The shape of the perturbation functions visibly changes for different pT(e) bins and can be

explained by competing effects between the soft and hard recoil components of the SET. Higher pT

electrons tend to come from more boosted boson decays. Because these events have a large boost,

a more significant component of the SET is due to the hard recoil. But, since the hard recoil is

more back to back with the electron, that scalar energy is less likely to interfere with the selection

of the electron.
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Figure 8.7: The pT(e) based corrections on the overall SET efficiency, as a function of SET.

8.8 Overall Tag-and-Probe Corrections

Some of the strongest sources of pT(e) dependence in our efficiency model are full MC

derived, where we exploit truth information. As such, they cannot be individually tuned to data.

We expect that the full Monte Carlo is realistic enough to tune these efficiencies, but we would

still like to check them against data. We use the tag-and-probe method to generate pT dependent

efficiencies in both data and Monte Carlo. If the ratio of the fast MC and data efficiencies is flat, it

means that the overall pT dependence of our model is correct to within the statistical power of the

data. If not, we could apply this ratio to the fast MC model, to fix the pT dependence. Figure 8.8

and shows the fast MC comparisons with data for the HMx and track match efficiency. The ratio

of the two efficiencies is consistent with a flat line. This is also true when we measures these

efficiencies for bins of η and SET. We are satisfied that our efficiency model accurately describes

the data. Figures 8.8 and 8.9 show comparisons between the pT dependence of the HMx and track

match efficiency for full MC and data (left), and the ratio of the two efficiencies, fitted with a
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zero-order polynomial (right).
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Figure 8.8: Left: pT dependence of HMx efficiency for CC electrons in data(black) and full

MC(red); Right: Ratio between the black and red curve in the left plot.
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Chapter 9

Recoil Measurement and Simulation

9.1 Introduction

Once we have an accurate description for measured electron energies in our W → eν model,

it is necessary to describe the other key observable: the hadronic recoil.

Since the recoil is a multi-faceted object with many complex dependences, developing a

parameterized model based upon first-principles is difficult and time-consuming. For this reason,

we have developed a data-driven, heuristic approach to modeling the recoil. The QCD processes

driving the formation of both the soft and hard hadronic content of an event are similar for Z → ll

and W → lν events, a fact that is exploited in tuning any parameterized recoil model. The “Recoil

Library Method” overlays simulated W → eν events with recoils extracted directly from Z → ee

data, chosen to match the W kinematics as closely as possible. This approach has luminosity

dependences and complex zero-suppression induced correlations built-in. It requires no a priori

understanding of the hadronic energy content of W events, and has no adjustable parameters.

In this Chapter we will describe the Recoil Library Method, along the necessary Bayesian

unfolding method, and we discuss its systematic uncertainties. We will also briefly describe the

parameterized recoil model used in the Run II D0 W mass measurement, since we will use this

model as a cross-check. The hadronic recoil plays a direct role in the calculation of two of the

primary observables in the W mass measurement: the MT and the "ET . It also figures indirectly in

the electron pT measurement through a kinematic requirement on our data the pT(W ) <15 GeV.

Especially because the recoil model is one of the dominant systematics in the W boson width

measurement, it is important that we model it properly.

87



9.2 Recoil Library Method

9.2.1 Overview

We build our recoil library as follows: We select Z → ee events from data, fast MC, or full

MC whose kinematics resemble those of W → eν events as closely as possible. For each event,

we remove the two electrons and add back the underlying energy we would expect beneath the

electron cones. The resulting energy in the calorimeter is summed vectorially to obtain the recoil

vector for the event. The recoil vector is described by the coordinates (RpT,ψ), where RpT is the

magnitude of the recoil pT, and ψ is the angle between the measured recoil and the true boson

direction in the transverse plane. These recoil vectors are stored in an array of 2-dimensional recoil

histograms, each histogram corresponding to a discrete bin in true Z pT. An unfolding procedure

is applied to correct for the smearing of the measured Z pT in both magnitude and direction, as

described in Sec 9.3.

We use the Recoil Library Method to generate fast MC, as follows: Truth-level W events

are taken from a physics generator such as pythia. Final state photons, if sufficiently close to

electrons, are merged with the electron. The energy of the generated decay electron is smeared

parametrically. A recoil is chosen randomly from the 2-dimensional recoil histogram corresponding

to the true pT of the W boson in that event, and further efficiencies and acceptance cuts are applied

to the electron and recoil.

Before producing a binned recoil library, certain event-by-event corrections must be applied

to the measured recoil. In this section, we describe those corrections.

9.2.2 Removing Z Boson Decay Electrons

The recoil system is defined as all of the energy in the detector excluding any electrons. In

data and full MC, reconstructed electrons correspond to clusters of energetic cells in the calorimeter.

In order to remove the electrons from an event, these cell clusters must be removed. In this process

we are cutting out any hadronic energy that might overlap with the electron showers. We correct

this effect by adding back an approximation of the underlying energy.
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This underlying energy correction to the electron (also known as the ∆u‖ correction) depends

on u‖ (the projection of the of the recoil along the electron transverse direction), instantaneous

luminosity, and pseudo-rapidity (η). In addition to correcting for the recoil energy under the

electron cluster, we also correct for electron energy that leaks outside of the cluster. This energy

leakage is subtracted from the recoil after the ∆u‖ is added back in. In Section 9.5 we estimate

the uncertainty due to these corrections.

In fast MC, when the recoil is overlaid on the simulated W → eν event these ∆UE correc-

tions are added back on to the electron, based on the geometry of the simulated event.

9.2.3 Minimizing the Effects of FSR Photons

pythia-based fast MC studies show that roughly 6% of the total Z → ee data in the D0 Run

II detector contain FSR photons with ET > 400 MeV that are sufficiently energetic and far from

the electrons that the electron clustering algorithm does not merge them with the reconstructed

electrons. These photons are consequently included in the measured recoil and not in the Z. Since

Z → eeevents contain more FSR photons than W → eνevents, the Z recoil library will contain a

too-large a contribution from photon energy.

In the ideal situation, all of these FSR photons could be removed from the recoil file, and

the effect could be separately modeled within the fast MC simulation. Because it is difficult to

identify these FSR photons on an event-by-event basis, the effect is reduced by tightening the lower

cut on the reconstructed Z boson mass to 85 GeV, reducing the fraction of events with a high pT

photon by 25%. In Section 9.5 the bias due to residual FSR photons is measured and found to be

small. Appendix A gives a detailed explanation.

9.2.4 Correcting for Selection Efficiencies

Selection efficiencies in W and Z events can introduce correlations between the recoil and the

electron. The two components of the efficiency model that most strongly drive these correlations

are the scalar ET (SET) efficiency and the u|| efficiency. The efficiencies are estimated using full

MC Z boson events, as described in [?] (data Z events for a data-based analysis, MC events for a
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purely MC analysis).

Since the kinematic and geometric properties of W events are not identical to those for Z

events, in order to properly model the correlations between the recoil and the electron from W

boson decays, we must remove these correlations from the Z recoil library, and apply them to the

simulated W events. We correct for or “invert” the Z efficiencies by reweighting the events in

the Z recoil library by 1/εuparεSET , where εupar is the product of the efficiencies and εSET is the

product of the SET efficiencies for both electrons in each Z event.

Since the scalar ET depends on UT, in order to apply the scalar ET Efficiency to W events,

it is necessary to generate scalar ET values that correspond to the chosen recoils. In addition to

our recoil library, we also make a table of SET distributions as a function of both true boson pT

and reconstructed recoil pT . For data or a full MC scenario where the true boson momentum is

unknown, we start with the reconstructed di-electron pT and apply the unfolding process described

in Section 9.3 to arrive at the correct, truth-level boson dependence.

When generating W templates using the Recoil Library Method, the u|| efficiency is applied

as a function of the projection of the chosen recoil along the direction of the simulated W boson

decay electron. Once a random recoil is chosen for a particular W pT, a random scalar ET is

chosen from the SET distribution corresponding to both that given W pT and the chosen recoil

pT. The SET efficiency is applied as a function of this chosen SET and the pT of the electron from

W boson decays.

9.3 Bayseian Unfolding

After the recoils have been corrected (for electron removal, FSR mitigation, and reweighted

for biases due to electron identification efficiencies, as described in the previous section), the asso-

ciation between the measured boson pT and direction and the measured recoil can be unsmeared

to a mapping between the true boson pT and direction and the measured recoil via a Bayesian

unfolding.
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9.3.1 Multidimensional Unfolding Using Bayes Theorem

Unfolding is a mathematically challenging problem, since it involves the reversal of a random

process. Because a given “true” state can fluctuate to many measured states or many different

true states can fluctuate to the same measured state, we cannot unfold detector effects on an

event-by-event basis. Rather, unfolding methods typically work with binned distributions.

For the Recoil Library Method, we chose to use a Bayesian unfolding approach [97]. This

approach suits our needs because it is intuitive, simple to implement, and easy to extend to the

multidimensional case. The Bayesian technique uses conditional probabilities to determine the

probability that a given measured state corresponds to a particular true state.

Consider a distribution of initial states Ii, {i = 1, 2, 3, ..., NI}, given by n(Ii) (the number

of events with initial state Ii) and a distribution of final states Fj , {j = 1, 2, 3, ..., NF } given by

n(Fj) (the number of events with final state Fj). Given the measured distribution n(Fj), and a

model for how each initial state can fluctuate to each final state P (Fj |Ii), we want to determine

the distribution of initial states n(Ii).

The unfolding assigns a final state Fj to each initial state Ii, weighted by the probability

that Fj came from Ii, wij = P (Ii|Fj).

n(Ii) =
NF∑

j=1

n(Fj)wij =
NF∑

j=1

n(Fj)P (Ii|Fj) (9.1)

Using simulations, we can calculate P (Fj |Ii), the likelihood of a true state fluctuating to a

measured state. We calculate P (Ii|Fj) from P (Fj |Ii) using Bayes’ Theorem, which states:

P (A|B) =
P (B|A)P (A)

P (B)
(9.2)

Stated for our particular example, with NI initial states and NF final states, Bayes’ Theorem

gives us:

P (Ii|Fj) =
P (Fj |Ii)P0(Ii)∑NI

k=1 P (Fj |Ik)P0(Ik)
(9.3)

and the following three conditions:
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•
∑NI

i=1 P0(Ii) = 1, which follows trivially from the definition of a probability distribution. P0

is the distribution of initial states.

•
∑NI

i=1 P (Ii|Fj) = 1, the normalization condition, which essentially states that every final

state must come from one of the initial states.

• 0 ≤ εi ≡
∑NJ

j=1 P (Fj |Ii) ≤ 1, which states that the detector is not perfectly efficient and,

therefore, not all initial states are necessarily recovered as final states.

We can interpret this equation as follows: The probability that a given final state Fj came

from a particular initial state Ii is proportional to the probability density of state Ii, multiplied

by the probability that Ii would fluctuate to Fj . The denominator normalizes the distribution.

Our Bayesian method requires us to make assumptions regarding the distribution of initial

states, P0. We are only using this assumed distribution to calculate the weights used to reweight the

measured data. Nonetheless, the quality of the unfolding could depend on our assumption of P0.

To minimize this effect, the method is applied iteratively, starting with a guess distribution for P0,

and with each successive iteration using the previous iteration’s unfolded distribution as the new

input. As a cross-check the method can always be applied with several different guess-distributions

and show convergence. The procedure is:

1. Choose an initial distribution for P0(Ii).

2. Using, P0(Ii) and P (Fj |Ii), compute the weights wij = P (Ii|Fj), as derived using the

Bayesian formula shown in Eqn 9.3.

3. Using these weights, recalculate the unfolded truth distribution, Pnew
0 (Ii) from the relation-

ship Pnew
0 (Ii) =

∑NF

j=1 PMeasured(Fj)P (Ii|Fj) described in Eqn 9.1.

4. Repeat the above steps with Pnew
0 (Ii) as the starting distribution.

5. Iterate until the unfolded P0 sufficiently converges.
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9.3.2 Unfolding the Recoil Distribution

The unfolding should produce a map between (ZpT,ψ, RpT) starting with a map in (ZpT
s,ψs, RpT),

where ZpT is the true Z boson momentum, ZpT
s is the smeared Z momentum, ψ is the angle

between the true Z boson direction and the measured recoil direction, ψs is the angle between the

smeared Z boson and the measured hadronic recoil, and RpT is the measured hadronic recoil. Since

we are unfolding in direction as well as magnitude we must bin the 2-D recoil vectors in the ψ di-

rection, as well. In this framework, the formula for the weights in the unfolding method is given by

Eqn 9.4. The analog to P (Ii|Fj) in Eqn 9.3 is now P (ZpTi,ψj , RpTk|ZpT
s
m,ψn

s, RpTk), which is

used to reweight the events in the recoil library. Likewise, the analog to n(Ii) is n(ZpTi,ψj , RpTk),

although we are not as concerned in the number of events per bin as we are with the number of

(ψj , RpTk) states as a function of true ZpTi bin.

The point of the Recoil Library Method is to map true boson pT and φ to smeared recoil pT

and φ in the hadronic detector. We do not want to unfold hadronic smearing; only the smearing

of the ZpT, and its direction with respect to the recoil. Therefore the magnitude of the smeared

recoil pT must remain the same on both sides of the conditional probability. We can then make

the simplification shown in Eqn 9.5, and the unfolding equation is then given by Eqn 9.6.

Wmnk
ijk = P (ZpTi,ψj , RpTk|ZpT

s
m,ψn

s, RpTk)

=
P (ZpT

s
m,ψn

s, RpTk|ZpTi,ψj , RpTk)P (ZpTi,ψj , RpTk)
∑S

s=0

∑T
t=0 P (ZpT

s
m,ψs

n, RpTk|ZpTs,ψt, RpTk)P (ZpTs,ψt, RpTk)
(9.4)

P (ZpT
s
m, ψn

s, RpTk|ZpTi,ψj , RpTk) = P (ZpT
s
m, ψn

s|ZpTi,ψj) (9.5)

Wmnk
ijk = P (ZpTi,ψj , RpTk|ZpT

s
m,ψs

n, RpTk)

=
P (ZpT

s
m,ψs

n|ZpTi,ψj)P (ZpTi, ψj , RpTk)
∑S

s=0

∑T
t=0 P (ZpT

s
m,ψs

n|ZpT
T
s , ψt)P (ZpTs,ψt, RpTk)

(9.6)
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We start with an initial guess distribution that is flat in φ, recoil pT, and Z pT. We find

that it takes fewer than 10 iterations for the unfolding method to attain convergence. We measure

the systematic error on the W boson mass and width by varying the number of iterations used

in the unfolding. The systematic error on the W boson mass and width due to the number of

iterations is found to be ≈ 1 MeV. We also test our dependence on initial guess distribution, as

discussed further in Section 9.5.

Figure 9.1 shows an example distribution of the probabilities that a Z with a reconstructed

pT of 7 GeV and a 3.5 GeV recoil pT corresponds to different true boson pT values. These proba-

bilities are used to reweight the given recoil as we store it in the recoil histograms corresponding

to the true Z pT’s.

Figures 9.2-9.5 show various recoil observables plotted versus the true Z pT, obtained from

the MC truth information of these MC samples, compared with the same observables plotted

versus the reconstructed Z pT, before and after the unfolding is applied. Clearly the unfolding

corrects for average effects of boson pT smearing on both the means and the RMS’s of these recoil

observables. These high statistics plots were generated using the fast MC model, although similar

results are observed in the full MC.

Figure 9.6 shows that unfolding gives the correct relationship between the true boson

direction and the reconstructed recoil direction.
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Figure 9.1: This figure shows an example distribution of the probabilities that a reconstructed Z

pT of 7 GeV with corresponding recoil of 3.5 GeV came from various true Z pT bins.
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Figure 9.2: Plot (a) shows the comparison of mean recoil pT versus true Z pT (black, open points)

and mean recoil pT versus Z pT as estimated from the reconstructed di-electron pT (red boxes).

Plot (b) shows the comparison of mean recoil pT versus true Z pT (black, open points) and mean

recoil pT versus Z pT estimated from the reconstructed di-electron pT, after unfolding (red boxes).
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Figure 9.3: Plot (a) shows the comparison of the mean projection of the recoil along the boson

direction (py) versus true Z pT (black, open points) and the recoil py versus Z pT as estimated

from the reconstructed di-electron pT (red boxes). Plot (b) shows the comparison of the recoil

py versus true Z pT (black, open points) and the recoil py versus Z pT as estimated from the

reconstructed di-electron pT, after unfolding (red boxes).
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Figure 9.4: Plot (a) shows the comparison of the RMS of the opening angles between the recoil and

the boson versus true Z pT (black, open points) and the RMS of the opening angles between the

recoil and the boson versus Z pT as estimated from the reconstructed di-electron pT (red boxes).

Plot (b) shows the comparison of the RMS of the opening angles between the recoil and the boson

versus true Z pT (black, open points) and the RMS of the opening angles between the recoil and

the boson versus Z pT as estimated from the reconstructed di-electron pT, after unfolding (red

boxes).
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Figure 9.5: Plot (a) shows the comparison of the RMS of the recoil pT versus true Z pT (black,

open points) and the RMS of the recoil pT versus Z pT as estimated from the reconstructed

di-electron pT (red boxes). Plot (b) shows the comparison of the RMS of the recoil pT versus

true Z pT (black, open points) and the RMS of the recoil pT versus Z pT as estimated from the

reconstructed di-electron pT, after unfolding (red boxes).
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Figure 9.6: Plot (a) shows the distribution of angles between the measured recoil and true Z

boson direction for Z events with a true Z pT of 4.0 to 4.25 GeV (solid line) overlaid with the

distribution of angles between the measured recoil and the Z boson direction as estimated from

the reconstructed di-electron pT (points with error bars). Plot (b) shows the distribution of angles

between the measured recoil and true Z boson direction for Z events with a true Z pT of 4.0 to

4.25 GeV (solid line) overlaid with the distribution of angles between the measured recoil and the

Z boson direction as estimated from the reconstructed di-electron pT, after unfolding (points with

error bars).
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9.4 A Brief Description of the Parameterized Recoil Model

The Parameterized Recoil Method models the detector response to the hard recoil using a

2-dimensional parameterization that smears the true hard recoil in both direction and magnitude.

The underlying event, as well as pileup and additional interactions are modeled using a combination

of minbias and zerobias libraries taken from data with the same luminosity profile. These effects

are then combined with the hard recoil and data-tuned corrections are applied to account on

average for correlations between the “hard” and “soft” recoil due to detector effects such as zero

suppression. The correction parameters are then tuned to either collider data or full MC, depending

on the study.

9.5 Biases and Uncertainties Particular to the Recoil Library Method

9.5.1 Fast MC Closure and Limited Statistical Power of the Z Recoil Sample

Because we use Z recoils to model W → eν events, we face statistical limitations. In 1

fb−1 of data, after the kinematic cuts, we expect roughly 18,000 central Z → ee events with two

matching tracks, whereas in the same data we expect roughly 500,000 central W events. Templates

made using the Z recoil method will need to contain millions of events. These events would chose

recoil vectors from the same set of 18,000 Z → ee events. Our method is thus limited by the

statistical power of the Z recoil sample and any fluctuations therein. If we are to rely on this

method as an input to a precision measurement, we need to determine the extent to which the

statistical limitations of the Z → ee sample propagate to an uncertainty on the measured W boson

mass and width.

We assess the statistical uncertainties of the recoil method using an ensemble of fast MC

tests resembling the statistical situation we expect in real data. We generate W and Z samples

corresponding to 1 fb−1 using the parameterized MC. For each set of W and Z samples, we use

the Z samples to create a recoil library, create templates from simulated W events created using

the recoil library, and use these templates to extract the W boson mass and width from the W
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samples created using the parameterized MC. The statistical power is measured using the spread

of extracted masses and widths from these toys. This study was done twice, once using recoil files

with no FSR, and creating the recoil library using truth-level information directly instead of the

measured Z pT plus unfolding, and once using recoil files that were unfolded from reconstructed

Z pT information, with an 85 GeV Z boson mass cut and whatever residual FSR photons remain.

For both sets, the measured uncertainties are approximately the same. This suggests that after

unfolding, loss of statistical power due to electron smearing and FSR fluctuations is small in

comparison to the dominant effects of the large hadronic smearing. For the rest of this paper we

will quote the uncertainty due to statistical limitations of reconstructed-level recoil files, since they

most closely resemble the procedure used for data.

Figure 9.7 shows the measured W boson masses from the transverse mass distributions from

100 simulated 1 fb−1 measurements, measured using the MT distribution, made from unfolded,

reconstructed recoil files with FSR photons. Figure 9.8 shows the corresponding measurements

for the W boson width. The mean fit value is in good agreement with the true value, showing that

the recoil library can accurately model the parameterized MC (“closure”). We test that the recoil

library can model the full MC in a later section.

The statistical uncertainty due to this method of recoil overlay is 5 MeV for the mass

measurement from the MT spectrum, 8 MeV for the electron pT spectrum, 17 MeV for the "ET

fit, and 40 MeV for the width. These agree with the statistical uncertainties on the parameterized

hadronic model, which are found to be 6 MeV for the MT mass fit, 7 MeV for the pT(e) fit, 19

MeV for the "ET and 42 MeV for ΓW over the same fit ranges. The results of this study show

that we do not lose substantial statistical power by directly using the Z data for our model of

additional energy content. In Appendix B we use a simple toy study to demonstrate why we do

not loss statistical power by not assuming a functional form whose parameters are obtained by

fitting Z → eeevents for the response/resolution of the recoil, as is done in the parameterized

method.

The final uncertainties due to the statistical limits of the recoil library for fits in the MT ,
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pT(e), and "ET are shown in Table 9.5.1.

σ(MW ) MeV MT σ(MW ) MeV pT(E) σ(MW ) MeV "ET σ(ΓW ) MeV

5 8 17 40

Table 9.1: Final uncertainties on the W boson mass and width for 1 fb−1 samples, due to limited

statistics of the Z sample, measured using unfolded, reconstructed recoil libraries.
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Figure 9.7: Mean W boson mass measured in ensemble tests for each template generated from a

recoil file.

9.5.2 Systematic Effects

We mentioned in Section 9.2 that several effects could potentially bias the Recoil Library

Method. These include unmerged FSR photons, acceptance differences between Z and W events,

the unfolding process, residual efficiency-related correlations between the leptonic and hadronic

objects, and underlying energy corrections beneath the electron window. The closure tests using

fast Monte Carlo described in section 9.5.1 shows the overall bias from this method to be smaller

103



W Width (GeV)
1.9 1.95 2 2.05 2.1 2.15 2.2

0

2

4

6

8

10

12

14

16

Figure 9.8: Mean W boson width measured in ensemble tests for each template generated from a

recoil file.
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than the statistical power of the tests. Nonetheless, we want to make sure that this small final

bias is not due to the cancellation of larger individual biases. We, therefore, proceed to examine

each effect independently.

Unmerged Final-State Photons

We measure the residual bias due to FSR photons by fitting two sets of templates to each

other, one made from an unfolded, high statistics recoil file with all FSR photons included, and

one made from an equivalent recoil file with no FSR photons. We find that the mass shift (no

photons - all photons) is −1 MeV for the MT fit, −1.7 MeV for the pT(e) fit, 2.4 MeV for the "ET ,

and less than 1 MeV for the width.

Differences in Geometric Acceptance

W events require a single, central decay electron, but make no η requirement on the neutrino

while the Z samples used to create the library require both electrons to be central. To test the

bias due to this effect, we generate two truth-level recoil files. For one recoil file we restrict both

electrons to the central region of the detector, as we would in data. For the other recoil file,

we restrict only one electron and allow the other electron to be anywhere in the detector, like a

neutrino. We make templates from the two independent recoil files, and compare them. We find

that the difference in measured mass, if any, is smaller than the 2 MeV statistical uncertainty of

this high-statistics study from the fast MC’s.

Efficiency Related Biases

When we generate the truth-level and unfolded recoil files, we reweight the events by the

reciprocals of the u‖ and scalar ET efficiencies, as described in Section 9.2.4. We also generate

histograms of scalar ET versus true boson and measured recoil pT. When producing the W → eν

templates, we reapply the u‖ and scalar ET efficiencies based on the geometry of the generated W

events and a random scalar ET chosen from the appropriate histogram. To check if this approach

introduces any biases, we perform fast MC closure measurements using templates made from truth-
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level recoil files. We perform this test three times. Once, we only apply the u‖ efficiency to the toy

data, the toy-recoil file, and the template set. Likewise, we only correct for the u‖ efficiency when

making the recoil library. In the second test, we only apply the SET efficiency, and in the final test

we apply both efficiencies. We conservatively estimate the uncertainty due to the efficiency model as

being the maximum bias in the fitted mass or width over all three measurements. Table 9.5.2 shows

the biases for all three variations. The final uncertainty attributed to the efficiency corrections is

7 MeV for the MT W boson mass fit, 7 MeV for the pT(e) fit, 8 MeV for the "ET fit, and 7 MeV

for the width fit.

Test ∆M(MeV) (MT) ∆M(MeV) (pT(e)) ∆M(MeV) ("ET ) ∆Γ(MeV)

u|| only -4 -7 -1 +5

SET only -7 -2 -8 +4

both 0 +2 -1 +7

Table 9.2: Difference between fitted values and input values for three variations of the truth-level,

fast MC closure test: u|| efficiency only, SET efficiency only, and both efficiencies.

Uncertainty in ∆u‖

In Section 9.2.2 we observed that by removing the electrons from the Z → ee recoil file,

we also remove some of the recoil energy that underlies the electron cones. We correct for this

effect by adding back the average energy, ∆u‖, expected beneath the electrons. We then subtract

a constant energy of 80 MeV from those recoils, the effect of electron energy that leaks outside of

the electron cone that is wrongly attributed to the recoil energy.

We assess the systematic uncertainty due to the energy corrections along the electron direc-

tion as follows: We generate full MC Z recoil files, using the truth-level Z pT bins, and removing

any stray FSR photons. We make a truth-level recoil file for each of three cases:

1. No energy corrections

2. A constant energy correction for underlying hadronic energy beneath the electron cone and
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constant correction for the electron energy leakage.

3. The parameterized energy correction for underlying hadronic energy beneath the electron

cone and constant correction for the electron energy leakage.

We then generate three set of templates from each of these three recoil files, and measure

the shift in fitted W boson mass between these three template sets. The W boson mass shifts by,

at most, 2 MeV for the MT fit, 4 MeV pT(e) fit, 1 MeV for the "ET fit, and 7 MeV for the width.

We conservatively assign the magnitude of these maximum shifts as the error on this method due

to the ∆u‖ correction.

Uncertainties Due to Implementation of Unfolding

The specific choices made in implementing the unfolding could introduce biases to the final

measurement. Our results may depend on our choice of initial distributions in recoil pT, Z pT,

and ψ. They could also depend on the number of iterations of the unfolding procedure we apply

to the recoil library. It was found that starting with flat initial distributions in recoil pT, Z pT,

and ψ, 10 iterations was sufficient to attain convergence.

We generate unfolded recoil files using two different initial distributions and using 8, 10,

and 12 iterations of the unfolding method. We find that the change in measured mass and width

extracted from MT , pT(e), and "ET fits is negligible. In addition to unfolding the recoil file using

a flat initial distribution for the recoil spectrum, we also tried several smoothly varying sinusoidal

guess distributions, and again find that the variation in the final unfolded recoil file is negligible

(less than 1 MeV).

9.5.3 Total Uncertainties

Tables 9.5.3 and 9.5.3 combine the measured statistical and estimated systematic errors

particular to the Recoil Library Method for 1 fb−1 of MC data. For the full MC closure study

presented at the end of this paper, we use the equivalent of 6 fb−1 of full MC Z recoils. We

estimate the overall hadronic uncertainty for this full MC study by scaling the uncertainty due to
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recoil statistics by a factor of 1/
√

6, leaving all other estimated systematics the same.

Source σ(MW ) MeV MT σ(MW ) MeV pT(E) σ(MW ) MeV "ET

Recoil Statistics 5 8 17

Final State Photons 1 2 2

Efficiency Related Bias 7 7 8

∆u‖ 2 4 1

Unfolding 1 1 1

Total 9 12 19

Table 9.3: Estimated systematic uncertainties on the W boson mass from the Recoil Library

Method, for 1 fb−1 of Z data.

Source σ(ΓW ) MeV MT

Recoil Statistics 40

Final State Photons 1

Efficiency Related Bias 7

∆u‖ 7

Unfolding 1

Total 41

Table 9.4: Estimated systematic uncertainties on the W boson width from the Recoil Library

Method, for 1 fb−1 of Z data.

The studies in this section shows the recoil library can adequately model the parameterized

fast MC with small systematic uncertainties and with a statistical power comparable to traditional

methods.
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Chapter 10

Backgrounds

In this Chapter we discuss backgrounds to our W boson measurement.

10.1 Fake Rate

The fake rate gives the probability that a QCD jet will have a fake track match and be

misidentified as an electron. The data sample we use to measure the fake rate, called “EM + jet”

consists of events with two back-to-back jets where one jet passes the jet ID requirements and the

other passes the EMID requirements. The fake rate fQCD is the ratio of the number of “EM+jet”

events with a matching track to the total number of events in the sample.

10.2 Backgrounds

Some fraction of collider events fake W → eν events, well enough to pass the strict selection

criteria imposed. These events can alter the shape of the relevant fit observables and must be

modeled in order to accurately extract the mass and width. The three dominant backgrounds in

W → eν events are the Z → ee background, W → τν → eννν, and QCD dijet events where one

jet fakes an electron. In this section we will look at these backgrounds.

10.2.1 Z → ee background

On occasion one of the two electrons in a leptonic Z boson decay will be lost in an uninstru-

mented region like a φ-crack or the Inner Cryostat Region (ICR). In these cases, the Z → ee event

will look very much like a leptonic W boson decay. We estimate these backgrounds directly from

data, because our geant detector model is not accurately modeling the ICR detector. We take

data that pass our standard W → eν selection, and require an isolated high pT track, back-to-back

and oppositely charged with respect to the identified electron. We also require that the track have
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a high ηdet corresponding to the ICR, and that the invariant mass of the track and EM object be

between 70 and 110 GeV. Our measured background fraction is found to be (0.80 ± 0.01)%.

10.2.2 W → τν Background

The τ lepton in a W → eν decay can decay into an electron and two neutrinos, thus

mimicking the signature of a W → eν decay. Fortunately this background is largely suppressed by

kinematics and the low branching fraction for the τ → eνν decay. We study this background in

full MC and find it to be small (1.6 ± 0.02)%.

10.2.3 QCD Background

The QCD background is determined for each bin of each observable distribution using the

“Matrix Method”. The Matrix Method starts with a “tight” and “loose” sample of W boson

events. For the tight sample, we use our standard W → eν data set, and we drop the track match

requirement for the loose sample. We know both the track efficiency εtrk and the QCD fake-rate

fQCD. The number of W → eν events in the two samples provides us with two equations to solve

for the two unknowns, NW and NQCD, namely:

N = NW + NQCD (10.1)

and

Ntrk = εtrkNW + fQCDNQCD, (10.2)

where N is the total number of events measured in the “loose” sample, NW is the number of signal

events, NQCD is the number of background events, and Ntrk is the number of observed events in

the “tight” sample with the track selection cut applied. This calculation can be performed in bins

of the three fit observables to derive the shape of the background, in addition to the total number

of events.
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10.2.4 Final Background Distributions

Figures 10.1, 10.2, and 10.3 show the shapes of the final background distributions for the

MT, "ET , and pT(e) fits, respectively.
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Figure 10.1: The three background shapes for the MT distribution: QCD (black), Z → ee (red),

and W → τν (blue)

111



MET (GeV)
25 30 35 40 45 50 55 600

100

200

300

400

500

600

700

Figure 10.2: The three background shapes for the "ET distribution: QCD (black), Z → ee (red),

and W → τν (blue)
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Figure 10.3: The three background shapes for the pT(e) distribution: QCD (black), Z → ee (red),

and W → τν (blue)
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Chapter 11

Full Monte Carlo Closure Tests

In addition to our parameterized simulations, we test the effectiveness of the recoil library

method on a full detector simulation designed to resemble data as closely as possible. We apply

the Z recoil library method, using the full Monte Carlo Z → ee sample, to generate W → eν

templates. The full Monte Carlo W boson mass and width are extracted from fits using these

templates, and compared with the true input values. After cuts, our full detector Monte Carlo Z

boson sample has the equivalent of roughly 6 fb−1 in integrated luminosity, and our W sample

has roughly 2.5 fb−1.

Before determining the full MC mass and width, we test the accuracy of our model by

comparing various full MC distributions to our fast MC model at the truth value of the W mass.

Figure 11.1 shows comparisons between W → eν full Monte Carlo and fast Monte Carlo using the

Recoil Library Method for the MT , pT(e), and pT(ν) distributions. Figure 11.2 shows comparison

plots for the Z full and fast Monte Carlo. Additional control plots also give good agreement

between fast MC and full MC.

Table 13.2 shows the final full Monte Carlo mass and width measurements, performed

using the recoil library method. Approximated systematic uncertainties on the electron model,

dominated by the uncertainty on the energy scale, are 15 MeV for MT and MET mass measurement,

12 MeV for pT(e) mass measurement, and 15 MeV for the width. Systematic uncertainties on the

hadronic model are taken from Section 9.5.3 of this paper. The results of our full Monte Carlo

measurements agree with the full MC input mass of 80.450 GeV and input width of 2.071 GeV to

within the uncertainties. These results are also consistent with the full MC measurements using

the parameterized recoil model, given in Table 11.2.
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Figure 11.1: Comparison plots between full MC (points) and fast MC (lines) for the W MT distri-

bution (top), W electron pT distribution (middle), and MET distribution (bottom). Corresponding

χ plots are shown on the right side.
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Figure 11.2: Comparison plots between full MC (points) and fast MC (lines). Top left: Z mass

distribution. Top right: Z pT distribution, reconstructed from the di-electron pT. Lower left: Z

Recoil pT distribution. Lower right: Z electron pT distribution.

Variable Fitted Mass [GeV]

MT 80.456 ± 0.015(stat) ± 0.015(elec syst) ± 0.008(recoil syst)

pT(e) 80.455 ± 0.019(stat) ± 0.012(elec syst) ± 0.009(recoil syst)

MET 80.450 ± 0.019(stat) ± 0.015(elec syst) ± 0.011(recoil syst)

Fitted Width [GeV]

MT 2.066 ± 0.027(stat) ± 0.015(elec syst) ± 0.019(recoil syst)

Table 11.1: Final result of the full Monte Carlo closure fits for the W mass and width, using the

recoil library method and the equivalent of 2 fb−1 of W data and 6 fb−1 Z recoil data. The input

W mass value is 80.450 GeV, and the width value is 2.071 GeV.
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Variable Fitted Mass [GeV]

MT 80.441 ± 0.015(stat) ± 0.015(elec syst) ± 0.002(recoil syst)

pT(e) 80.441 ± 0.019(stat) ± 0.012(elec syst) ± 0.003(recoil syst)

MET 80.429 ± 0.019(stat) ± 0.015(elec syst) ± 0.007(recoil syst)

Fitted Width [GeV]

MT 2.065 ± 0.027(stat) ± 0.015(elec syst) ± 0.016(recoil syst)

Table 11.2: Final result of the full Monte Carlo closure fits for the W mass and width, using the

parameterized recoil model and the equivalent of 2 fb−1 of W data and 6 fb−1 Z recoil data. The

input W mass value is 80.450 GeV, and the width value is 2.071 GeV.
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Chapter 12

Systematic Uncertainties

In this chapter we present the systematic uncertainties connected with the MW and ΓW

measurements. Pseudo-experiments are produced from fast Monte Carlo, where a given parameter

is varied by ±1σ and ±2σ, with all other parameters fixed at their default values. These pseudo-

experiments are are fit with fast MC templates generated with all of the parameters set to their

respective defaults. It is assumed that the variation of the W boson mass and width is roughly

linear for these small perturbations about the default values. For a given observable we then have

the formula:

σ2
Obs =

(
∂Obs

∂X

)2

σ2
X (12.1)

where Obs is the observable in question (MW or ΓW ), X is the parameter in question, and ∂Obs
∂X

is the slope of the uncertainty due to X.

12.1 Theoretical Uncertainties

Several uncertainties in our boson production and decay models contribute to the final

uncertainty on the W boson mass and width measurements.

12.1.1 PDF Uncertainties

One important theoretical input into the theoretical boson production model used in this

analysis is the set of parton distribution functions (PDF) that describe the distribution of fractional

momenta carried by the quarks and gluons in the pp̄ pair that produces the W . These PDF sets are

experimentally derived and limited precision. The precision of the PDF model must be propagated

to the W boson mass and width fits, to determine its impact on these measurements. We use the

CTEQ6.1 PDF set, produced by the CTEQ collaboration, is in our resbos generator. These
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sets are described by an orthogonalized set of twenty independent parameters. We can very these

parameters and measure the variation of MW and ΓW to determine their respective errors. In

addition to the nominal PDF set, we have twenty pairs of 40 PDF sets, each pair corresponding

to a ±90% confidence level variation on a particular parameter with all other parameters fixed at

their default values. The mass and width shifts are measured for each pair of PDF sets to provide

the variation of the W boson mass for variations of each parameter at 90% confidence level. These

individuals are combined according to the formula”

σMW =
1

1.6
1
2

√√√√
N∑

i=1

(
M (+)

i −M (−)
i

)2
, (12.2)

where i corresponds to a particular parameter, M (+)
i and M (−)

i represent the measured

mass (or width) for positive and negative variations of the parameter at 90% confidence, and the

factor of 1.6 scales the 90% confidence to a one-σ variation.

12.1.2 Boson pT Model

The theoretical model describing the boson pT spectrum is found to be most sensitive to the

g2 parameter of the BLNY parameterization of the non-perturbative region of the spectrum. This

g2 value, also experimentally measured, has a finite precision that impacts the resulting spectrum

and the fast MC templates. The fast MC model describe in this dissertation use the global fit

value of 0.68 ± 0.02. To assess the uncertainty on the W boson mass and width, toy data are

produced for ± 0.02 variations on g2 and fit with default templates to obtain the error derivative

on MW and ΓW due to the pT model.

12.1.3 QED Model

The QED uncertainty in our model corresponds to several effects involving final and initial

state photon radiation. First, resbos, neglects higher-order processes, such as ISR-FSR inter-

ference and W and Z self-energy box diagrams. In addition, the uncertainty depends on our

electron-photon merging model (described in Chapter 7. Lastly, we might be sensitive to the 400
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MeV lower cut on FSR photons. Preliminary tests using wgrad and zgrad showed that higher

order processes were negligible. For the uncertainties due to FSR merging and the photon pT

cut we set conservative upper limits by varying the cone size and pT cuts by large amounts and

propagating those variations to the W boson mass and width measurements. The systematic un-

certainty from the QED model cited in this dissertation is the sum of those two upper limits in

quadrature.

12.2 Experimental Uncertainties

12.2.1 Electron Energy Scale

The dominant uncertainty in the W boson mass measurement, and one of the larger uncer-

tainties in the width measurement is the uncertainty due to the limited precision of the electron

energy scale and offset derived from the Z → ee resonance. These two parameters are highly nega-

tively correlated, and as a consequence we cannot merely propagate the uncertainties of these two

parameters independently, since the uncertainties largely cancel. Rather, we combine the errors,

in a correlated fashion according to the formula:

σtot =
√

σ2
scale + σ2

offset + ρσscaleσoffset (12.3)

where ρisthecorrelationcoefficientbetweentheenergyscaleandoffset.

12.2.2 Electron Energy Resolution

The electron energy resolution at the energies of W and Z boson decay electrons is domi-

nated by the sampling and constant terms in our resolution model, described in Chapter 7. The

uncertainty on the sampling resolution can be determined by propagating a 1−σ variation on the

uncertainty of the missing material in the full MC detector model. The constant term is highly cor-

related with the sampling term, since it essentially measures the residual resolution effects beyond

the sampling and noise terms. We vary the sampling term and remeasure the constant term. We

propagate these correlated variations through our W → eν model and determine the uncertainty
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on the mass and width.

12.2.3 Non-Linearity

The electron E-loss corrections used to linearize the electron response of the calorimeter are

tuned to our special full MC sample with missing material reintroduced. The uncertainty on that

missing material could impact the linearity of the energy response. To test this systematic effect,

we vary the missing material by its uncertainty and, leaving the energy scale and offset fixed,

remeasure the W boson mass and width. To within the precision of our detector understanding,

we find that the E-loss corrections and linear electron energy scale provide an accurate detector

description. The upper limit this measurement placed on the non-linearity is small.

12.2.4 Hadronic Model

The uncertainty due to the Recoil Library Method are estimated in Chapter 9 of this thesis.

While not large for the W boson mass, it is the dominant uncertainty in the width measurement.

12.2.5 Efficiencies

The uncertainty due to our efficiency model is dominated by the u|| and SET efficiencies,

which introduce the strongest dependence on kinematic variables.

The u|| uncertainty has two parameters which we vary independently by one sigma and

propagate to the W boson mass and width. For the scalar ET efficiency, there are two aspects

of the model that we are interested in testing, namely the overall SET dependence and the pT (e)

dependence. The overall SET dependence is described by a four-parameter fit to full MC. We

measure the effect of a correlated 1-σ variation of these four parameters on the mass and width.

The uncertainty due to the pT(e) dependent corrections on the SET efficiency model is determined

as follows. These corrections are determined from comparisons with full MC and limited by the

statistical power of the full MC W sample. We estimate how much the overall shape of the pT(e)

dependence of the SET efficiency would vary over statistical fluctuations in the full MC sample

and propagate those fluctuations to the mass and width.
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For the overall uncertainty on the pT, SET, and η dependence of the efficiency, we look at

ratios between the full MC to which we tune our fast MC and the data. We plot the ratio of the

efficiencies in two 2D histograms, one histogram of SET versus pT(e) and one histogram of η versus

pT(e). We fit them with a plane, noting the values, uncertainties, and correlations on the slopes.

The χ2 shows that the ratio of the deficiencies are consistent with a fit to a plane with slopes

< 10−4 We find that the slopes in the η and SET directions are almost entirely uncorrelated with

the slope in the pT direction, so we can propagate the uncertainties on these slopes independently.

We apply 1-sigma variations on the slope of the efficiency ratio to reweight sets of toy data, and

extract the W boson mass and width from these toys. It is observed that variations in the slope

in the SET and η directions have a less than 1 MeV effect on the mass and width. The effects

of variation in the overall pT dependence are not negligible. We add this in quadrature with the

estimated uncertainty on the u|| efficiency and cite this as the conservative uncertainty due to the

efficiency model.

12.2.6 Backgrounds

The binned background shapes used in the W boson fits, come with statistical error bars.

We generate variations on the background shapes by independently varying the contents of each

bin according to gaussians with central values set to the nominal bin value and RMS values equal

to the 1-sigma error bars. The nominal background shape is applied to a fast MC sample. A

template set is produced to fit the fast MC sample. We apply thousands of statistical variations

on the backgrounds to the same template set and refit for the mass and width.

12.3 Summary of Systematic Uncertainties

Tables 12.1 and 12.2 show summaries of the systematic uncertainties for the Run IIa W

boson mass and width fits using the Recoil Library Method. The uncertainties are comparable

to those using the Parameterized Recoil Model, and sufficiently low to guarantee a competitive 1

fb−1 measurement.
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Source σ(MW ) MeV pT (e) σ(MW ) MeV MT σ(MW ) MeV pT (ν)

Experimental

EM Scale 34 34 34

EM Resolution 2 2 3

Recoil Model 9 12 19

Efficiencies 6 5 5

Backgrounds 5 2 4

Experimental Total 37 35 41

W Model

PDF 11 9 14

QED 7 7 9

Boson pT 5 2 2

W model Total 14 12 17

Total 39 38 44

Table 12.1: Experimental and theoretical systematic uncertainties on the W boson mass measured

with 1 fb−1 in the W → eν channel.
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Fit Range σ(ΓW ) MeV [90,200] σ(ΓW ) MeV [100,200] σ(ΓW ) MeV [110,200]

Experimental

EM Scale 44 33 25

EM Resolution 23 10 4

Recoil Model 43 41 35

Efficiencies 21 19 19

Backgrounds 5 6 9

Experimental Total 69 58 48

W Model

PDF 16 20 24

QED 7 7 7

Boson pT 3 1 0

WM 13 5 2

W model Total 22 22 25

Total 72 62 54

Table 12.2: Experimental and theoretical systematic uncertainties on the W boson width measured

with 1 fb−1 in the W → eν channel. Fits are performed over three different ranges in the tail of

the MT distribution.
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Chapter 13

Results

As discussed in Chapter 3, the measurements of the W boson mass and width were blinded,

to prevent bias. A series of cross-checks and comparison plots were produced. Only after we were

sufficiently convinced by these checks, did we unblind the results. In this chapter, we present the

final, unblinded measurements of the W boson mass and width using the Recoil Library Method,

and their respective cross-checks.

13.1 Final Result for the W Boson Mass

The final, unblinded mass measurements of the W boson mass, using the Recoil Library

Method, are given in Table 13.1. These measurements all give good agreement with the current

world average of 80.398 ± 0.025 GeV. They also give good agreement with fits done using our fast

MC model with a parameterized recoil model instead of the recoil library method. We present

these comparisons as a cross-check in the following section.

Variable Fitted Mass [GeV]

MT 80.4011 ± 0.024(stat) ± 0.038(syst)

pT(e) 80.4010 ± 0.027(stat) ± 0.041(syst)

MET 80.4012 ± 0.023(stat) ± 0.044(syst)

Table 13.1: Final result of the data fits for the W mass, using the recoil library method and the 1

fb−1 of collider data.

13.2 Cross-Checks and Comparison Plots for MW

Before fitting or even comparing W → eν observables, it is useful to compare the fast MC

model with Z → ee data. Figures 13.1, 13.2 , and 13.3 shows comparison plots for the invariant
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mass, electron pT and recoil pT distributions between Z → ee data and fast MC.

Figures 13.4, 13.6, 13.7 show the comparison plots between data and fast MC evaluated

at the fit values, for W → eν observables. The model gives good χ2 comparison with data.

Figure 13.5 shows an example of the negative log-likelihood versus W boson mass for the fit to the

MT distribution.

In addition to performing fits on the whole data set, we broke the W → eν data into subsets

with different instantaneous luminosities, run numbers, SET ranges, and u|| values, as well as

different ηdet, UT, and φ-mod cuts. For each of these data subsets, it would be proper to first

remeasure the energy scale, and generate the fast MC W templates with the new energy scale.

Because this is too time intensive, we proceed as follows. Since the energy scale in the W boson

mass measurement at DØ is set by Z → ee data, we are really measuring the ratio of the W boson

mass to the already well-known Z-boson mass. Even without retuning our MC for the various data

sets, we expect that the MW /ZW should stay relatively constant, since effects like the energy scale

will cancel. The relevant observable in our cross-check plots is thus the change in the MW /ZW

ratio, shown on the right side of Fig. 13.8-13.12. This is relatively stable and consistent over the

data sub-sets with our fit value for the entire data set.

Figures ?? show the variations in the W boson mass measured from the MT, pT(e), and

"ET observables, over different fit ranges. This fits are reasonably stable.

Finally, we compare MW measured using the Recoil Library Method, to the value extracted

using the parameterized recoil model. While the recoil model is a small systematic for the W

boson mass measurement, we nonetheless lack a good first-principles description of the recoil

system. The two methods therefore provide good cross-checks for unaccounted biases that could

exist in either model. Figure ?? shows the W boson mass fits for all three observables using the

Recoil Library Method and overlaid with the parameterized recoil model (in red). Both models

give good agreement for all three observables.
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Figure 13.1: Comparison of Z → ee invariant mass spectrum between data and fast MC.
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Figure 13.2: Comparison of Z → ee pT(e) spectrum between data and fast MC.

128



0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900
/ndf = 33.7/452χ

DATA

FAST MC

0 5 10 15 20 25 30

-3

-2

-1

0

1

2

3

Figure 13.3: Comparison of Z → ee recoil pT spectrum between data and fast MC.
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Figure 13.4: Comparison plots between data (points) and fast MC (lines) for the W MT distribu-

tion.
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Figure 13.5: Negative log-likelihood plot for the W boson mass fit to the MT observable.
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Figure 13.6: Comparison plots between data (points) and fast MC (lines) for the pT(e) distribution.
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Figure 13.7: Comparison plots between data (points) and fast MC (lines) for the "ET distribution.
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Figure 13.8: Left: W mass as measured from MT, pT(e), and "ET observables for two independent

run periods. Middle: The equivalent fits for the Z mass from the di-electron invariant mass

spectrum. Right: The fractional change in the W/Z mass ratio measured from MT, pT(e), and

"ET observables. The green line represents the nominal value.
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corresponding to different luminosities. Middle: The equivalent fits for the Z mass from the di-

electron invariant mass spectrum. Right: The fractional change in the W/Z mass ratio measured

from MT, pT(e), and "ET observables. The green line represents the nominal value.
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Figure 13.10: Left: W mass as measured from MT, pT(e), and "ET observables for two data subsets,

corresponding to positive and negative u||. Middle: The equivalent fits for the Z mass from the di-

electron invariant mass spectrum. Right: The fractional change in the W/Z mass ratio measured

from MT, pT(e), and "ET observables. The green line represents the nominal value.
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Figure 13.11: Left: W mass as measured from MT, pT(e), and "ET observables for two different

UT cuts. Middle: The equivalent fits for the Z mass from the di-electron invariant mass spec-

trum. Right: The fractional change in the W/Z mass ratio measured from MT, pT(e), and "ET
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Figure 13.12: Left: W mass as measured from MT, pT(e), and "ET observables for two different

ηdet cuts. Middle: The equivalent fits for the Z mass from the di-electron invariant mass spec-

trum. Right: The fractional change in the W/Z mass ratio measured from MT, pT(e), and "ET

observables. The green line represents the nominal value.
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13.3 Final Result for the W Boson Decay Width

The final, blinded measurement of the W boson width over the tail of the MT spectrum, using

the Recoil Library Method is ΓW = 2.2736 ± 0.039(stat) ± 0.062(syst). This value is in good

agreement with the standard model prediction of ΓW = 2.091± 0.048 GeV and the world average

of ΓW = 2.098 ± 0.002 .

Variable Fitted Width [GeV]

MT 2.2736 ± 0.039(stat) ± 0.062(syst)

Table 13.2: Final result of data fits for the W width, using the recoil library method and 1 fb−1

of collider data.

13.4 Cross-Checks and Comparison Plots for ΓW

Figure 13.13 shows the comparison between the data and fast MC MT distribution, evaluated

at the fit value for the W boson width. Figure 13.14 shows the same comparison in the tail region

used as our fit range ([100,200] GeV). Likewise, Fig. 13.15 and 13.16 show comparisons in the

tail region of the pT(e) and "ET distributions, respectively. Our model generally gives good χ2

agreement with these data observables. The large χ2 per degree of freedom in the tail of the "ET

plot is explained by a single bin in the data at 75 GeV that, when removed, brings the χ2 per

degree of freedom close to one.

As with the W boson mass measurement, we measure the width over various sub-sets of the

data. Figure 13.17 show the result of these various measurements, drawn with statistical error bars.

These different measurements are consistent with the fitted value for our entire data sample. Since

the W boson width is less sensitive to shifts in the Z mass, we do not include these corrections in

the cross-check plots for the width.

We also vary the lower and upper limits of the MT fit. In Fig 13.18 we present these varia-

tions with their statistical uncertainties, represented by yellow bands. The results are reasonably

stable over the different fit ranges.
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Figure 13.13: Comparison plots between data (points) and fast MC (lines) for the W MT distri-

bution on a log scale.

137



100 110 120 130 140 150 160 170 180 190 200

10

210

310
/ndf = 83.1/752χ

DATA

FAST MC

ντW->

Z->ee

QCD

60 80 100 120 140 160 180 200

-3

-2

-1

0

1

2

Figure 13.14: Comparison plots between data (points) and fast MC (lines) in the tail of the W

MT distribution on a log scale.
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Figure 13.15: Comparison plots between data (points) and fast MC (lines) in the tail of the W

MT distribution on a log scale.
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Figure 13.16: Comparison plots between data (points) and fast MC (lines) in the tail of the W

MT distribution on a log scale.
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Figure 13.17: Plots showing the blinded W boson width measurements for various sub-sets of

the data: separated into independent run-ranges (upper left), for different UT cuts (upper right),

separated into independent sets of instantaneous luminosity (middle left), for different ηdet cuts

(middle right), separated into positive and negative u|| (lower left), and for different φmod cuts

(lower right).
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Figure 13.18: Plots showing the variations of the measured W boson width for different values for

the lower range of the fit (top) and different values of the upper range (bottom) with statistical

error-bars. The yellow bands correspond to the fits using the Recoil Library Method, and the red

points correspond to the Parameterized Recoil Model.
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The tail of the W MT distribution contains only weak shape information. Consequently,

the W boson width can be extracted by comparing the fraction of events in the MT tail between

template distributions and data, with little loss in statistical power. This cross-check gives us a

consistent result with that of the negative log-likelihood fit. The results are shown in Fig 13.19.
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Figure 13.19: Fraction of events in the tail region [100,200] to events in the body [0,100] of the

W boson MT distribution versus blinded W boson width for fast MC templates. The black lines

represent the known tail-to-body ratio for the data, and ±1σ of that ratio. The data line intersects

with the graph at roughly 2.27 GeV, which agrees with the blinded width value obtained through

negative log-likelihood fits.

Finally, we compare ΓW measured using the Recoil Library Method, to the value extracted

using the parameterized recoil model. Since the recoil system contributes the largest systematic

uncertainty on the W boson width, this is a very important cross-check. The blinded measurement

of ΓW extracted from templates made using the parameterized recoil model is ΓW = 2.2886 ±

0.038(stat) ± 0.062(syst) GeV, which differs from the Recoil Library Method by only 15 MeV.

Figure 13.20 shows fit results for different fit ranges for the Recoil Library Method, overlaid with

the fit results for the parameterized recoil model (in red). The two models give good agreement.
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Figure 13.20: Plots showing the variations of the measured W boson width for different values for

the lower range of the fit (top) and different values of the upper range (bottom) with statistical

error-bars. The yellow bands correspond to the fits using the Recoil Library Method, and the red

points correspond to the Parameterized Recoil Model.
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Chapter 14

Conclusions and Future Prospects

In this dissertation, we presented measurements of the W boson mass and decay width in 1

fb−1 of data, using a novel method to model the hadronic recoil system in W events using a Z → ee

data recoil library. The analysis with this Recoil Library Method gave comparable systematic and

statistical uncertainties to the parameterized approach for both MW and ΓW . Our W boson mass

and width fits to full MC W → eν samples gave excellent agreement with the input parameters, to

within statistical errors, and provided confidence in the methodology. Our data measurements of

both parameters were consistent over various run periods, luminosities, kinematic cuts, and other

observables, as well as for different fit ranges. Results for both the W boson mass and width using

the parameterized and recoil library approaches were within 15 MeV of each other and smaller

than the statistical uncertainties.

These measurements using either recoil method represent the most precise single measure-

ments of MW and ΓW to date. They will most certainly reduce the uncertainty on the world

averages, which remain stable after including these measurements. These results promise to fur-

ther restrict the expected mass range of the Standard Model Higgs boson. Figures 14.1 and 14.2

show the measurements made in this thesis compared with the world average and other experi-

mental results for the W boson mass and width, respectively. Figure 14.3 shows the ever more

restricted region where the mass of the Higgs boson is allowed by Standard Model calculations.

The method presented in this paper has many advantages. It accurately describes the highly

complicated hadronic response and resolution for W recoils in a given calorimeter. It includes

complex correlations between the “hard” and “soft” components of the recoil, and scales the recoil

appropriately with luminosity. It requires few assumptions, no first-principles description of the

recoil system, and no adjustable parameters. As hadron collider experiments such as the Run

II Tevatron and the LHC operate at ever higher luminosities, this type of heuristic approach to
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CDF Run  II  0.048–80.413 

CDF Run 0/I  0.081–80.436 

World average   (prel.)  0.025–80.399 

Figure 14.1: The new D0 W boson mass measurement compared with various other measurements

and the world average (yellow band).
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Figure 14.2: The new D0 W boson width measurement compared with various other measurements

and the world average (yellow band). (still blinded)

modeling the recoil system will serve as a useful cross-check and alternative to more traditional

parametric approaches.

Perhaps most exciting about this analysis are the future prospects. The dominant systematic

uncertainties on the W boson mass and width -the electron energy scale and recoil model- are

mainly limited by the statistics of the Z → ee sample. In the combined 5 fb−1 of Run IIb

data, these errors will likely shrink by a factor of
√

5, putting the prospect of a W boson mass

measurement with 25 MeV total uncertainty well within sight. Comparable results from CDF

could, when combined with DØ bring the uncertainty of the Tevatron measurement down to 15

MeV on the W boson mass, where theoretical uncertainties begin to dominate and constraints on

both the Higgs boson and on physics beyond the Standard Model become very interesting.
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Figure 14.3: Plots showing the restricted regions where the Higgs mass is expected.
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Appendix A

Propagating the Effects of FSR in the Recoil File to W → eν Templates

As we have described in Section 9.2.3 and 9.5.2, roughly 6% of the events in the data recoil

file contain FSR photons that have not been merged with the corresponding electron and are falsely

attributed to the recoil energy. We address this by tightening the lower cut on the Z boson masses

for the recoil file construction to 85 GeV, thereby removing some of the events with the most

energetic photons and reducing the total number of unmerged FSR events by more than 25%. Our

final bias due to FSR is measured to be small (<10 MeV ). Nonetheless, the remaining events in

the recoil file contain some events with unmerged final-state photons at high transverse momenta

(O(10) GeV). It is not intuitive that the final FSR bias on our method should be small. In this

appendix we explore why the FSR bias is so low.

To first order, we can approximate the bias on the W boson mass due to FSR in terms of

a shift in average u‖ due to the unmerged photons. However, we cannot attribute this bias to

the shift in the u‖ distribution of the Z recoil file itself, since we care about the effects on the u‖

distribution of the modeled W → eν events. These generated W events decay independently of

the Z events from which the recoils are extracted. Instead, we generate W u‖ distributions, using

recoil files with and without FSR photons. We produce these toy distributions by taking a sample

of generator-level W events, choosing a random recoil from the recoil file that matches the W pT,

and projecting that recoil on to the direction of the generator level electron. Figure A.1 shows the

u‖ distribution made from a recoil library without FSR (a) and one with FSR (b). The observed

shift in the mean u‖ is consistent with zero, to within the 1.8 MeV error on the means of the

distributions. As large as the pT of the unmerged photons can be, the direction of these photons

relative to the independently generated W electron is relatively uniform, so the effect cancels on

average.

We can also study the observed impact of the unmerged photons on the hadronic energy
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Figure A.1: The following plots show the toy u‖ distribution made using generator-level W → eν

events, a recoil library without FSR (a), and one with FSR (b).
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scale of the recoil file. For low Z pT we expect little correlation between the direction of the boson

and the decay electrons. Likewise, we expect little correlation between the radiated photons and Z

direction. Thus, at low transverse momenta, the relative directions of FSR photons should cancel

and have no net effect on the recoil pT. As Z pT increases, the electrons and final state photons

will be closer to the Z direction. We can plot the projection of the final-state photon pT along

the Z boson direction as a function of Z pT, as shown in Fig A.2. We see that the fitted slope of

the graph is 1.2%, reducing the recoil response for those events with unmerged final-state photons.

Since those events, after the 85 GeV Z boson mass cut, comprise only 4% of the total events in the

recoil file, we expect the bias on the overall recoil response to be approximately 1.2%×4% = 0.05%.

For the parameterized recoil model, the derivative of the MT W boson mass fit with respect to

the hadronic energy scale has a slope of -482 MeV. This would give a bias of less than one MeV

for a shift in the energy scale of 0.0005.
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Figure A.2: The projection of unmerged photon pT along the direction of the Z boson, versus the

pT of the Z.
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Appendix B

Statistical Power and the Continuity Assumption

The Recoil Library Method described in this paper assigns each generated W event a recoil

chosen from a discrete bin in boson pT. One would expect the effective recoil response of each

bin to fluctuate randomly due to the finite statistics particular to that bin. In contrast, the

parameterized recoil model fits all of the data with a single, continuous recoil response function.

The error at each point of this smooth function is determined by the errors on the fit parameters

which are constrained by the statistics of the whole data set, not just the statistics at that particular

point. One might expect that by forgoing this continuity assumption, the Recoil Library Method

sacrifices a significant measure of statistical power due to bin-by-bin fluctuations. However, our

error analysis described in Section 9.5.1 does not find this to be the case. To within the statistical

precision of our study, the errors are indistinguishable from those of the parameterized model. In

this appendix we construct a simple toy study and find that the loss of statistical power from

dropping the continuity assumption is small in comparison with the finite hadronic resolution of

the D0 detector.

For this study we generate sets of 18,000 Z → ee recoils using a very simple toy model. The

pT spectrum is generated according to a Landau distribution with mean of 3 GeV, an RMS of 1.5

GeV and the maximum boson pT is restricted to 20 GeV. The magnitude of the recoil is smeared

according to a Gaussian with a sampling resolution of 0.8
√

GeV. The recoil information is stored

in a histogram, whose x-axis the Z pT and y-axis plots the measured mean recoil pT and its error,

averaged over all events that fall into that particular Z pT bin. We then fit this histogram with a

straight line. We produce 1000 of these toy recoil histograms.

For each of the 1000 recoil histograms, we generate 4 million toy W → eν events. We

generate these W bosons with the same pT spectrum as the toy recoils described above, a constant

mass of 80 GeV, and rapidities less than ±1.1. We decay the boson into two massless leptons, with
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a uniform φ distribution in the rest frame, boosting them by the boson pT and taking one of the

leptons to be the electron.

The recoil response for each of the 1000 independent W samples is modeled using its cor-

responding recoil histogram. For each W event, we model the recoils twice, by using the recoil

histogram as a discrete look-up table and pick the recoil pT corresponding to a particular bin in

boson pT, and by modelling each recoil response using the 1st-order polynomial fit function to the

histogram. We repeat this entire study twice, once without applying a hadronic resolution, and

once with an 0.8
√

GeV hadronic sampling resolution.
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Figure B.1: Example η-imbalance distributions corresponding to one particular 4 million event W

sample and the recoil modeled using one particular recoil histogram containing 18k events, with

no hadronic smearing. Plot (a) shows the η-imbalance distribution where the recoil response was

modeled using linear fits to the recoil data (continuity assumption). Plot (b) shows the η-imbalance

where the recoil response is chosen from the appropriate bin of the recoil histogram (discrete case).
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For each toy W sample we construct an “η-imbalance” distribution, defined as the difference

between magnitudes of the boson pT and the projection of the recoil pT along the boson direction.

Because the recoil and boson are back-to-back, and the boson pT is unsmeared in this simple

toy model, the η-imbalance is equivalent to the difference between the absolute values of the

measured recoil pT and the true boson pT over the 4 million events. Figure B.1 shows example

η-imbalance plots for the W ensembles with no hadronic resolution and the recoil response modeled

using the continuity assumption (left) and the discrete look-up table (right). Since the true recoil

response function has a slope of 1, we might expect the mean of these η-imbalance distributions

to be consistent with zero. However, since they both model the recoil using a finite, 18k Z

recoil sample, they are subject to statistical fluctuations in that sample. The RMS of the η-

imbalance distribution corresponding to the continuity assumption is small but non-zero due to

the slight discrepancy between the fit function and the true response. The RMS of the η-imbalance

distribution corresponding to the look-up method is significantly higher. This is due to both the

fluctuation of the mean recoil response averaged over all bins, and from the fluctuations of each

individual bin around that average response. We see that the effect of these bin-by-bin fluctuations

is an over-smearing of the recoil, degrading the statistical power of our model. Indeed, when we look

at the modeled W boson transverse mass distribution as generated from a recoil histogram made

using our procedure above and recoil histograms where the bin-by-bin fluctuations are amplified 2

and 3 times (Fig. B.2), we see that bin-by-bin fluctuations reduce definition in the Jacobian edge

of the MT distribution. Note however that in Fig. B.2, the recoil resolution is not yet turned on.

When we turn on the resolution, this over-smearing effect will be less pronounced, as we shall see.

While Fig B.1 shows example η-imbalance distributions for one particular 4M W sample us-

ing one 18k recoil histogram, we can study the aggregate behavior of the η-imbalance distributions

for 1000 such ensembles of pairings. For example, we can plot a histogram of the means of 1,000

η-imbalance distributions. The means of the distributions in Fig B.1 would then represent one sin-

gle event in their respective summary histograms. While the mean of the η-imbalance distribution

of a particular combination is expected to fluctuate from zero due to finite Z statistics, over many
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Figure B.2: An example, generator-level W boson transverse mass distribution made using a

standard recoil histogram (solid-line), and using recoil histograms with the bin-by-bin fluctuations

amplified 2 (dashed-line) and 3 (dotted-line) times. No hadronic resolution is applied.
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Figure B.3: The distribution of the means of η-imbalance distributions for 1000 toy W sets, each

generated from and independent recoil histogram containing 18k events, with no hadronic smearing.

Plot (a) shows the means of the η-imbalance distributions where the recoil response was modeled

using linear fits to the recoil data (continuity assumption). Plot (b) shows the means where the

recoil response is chosen from the appropriate bin of the recoil histogram (discrete case). Note how

the RMSs of these two distributions are roughly equal. Since fluctuations in the mean η-imbalance

represent fluctuations in the mean response for a given recoil file, we see that the continuous and

discrete cases both model the mean response with the same precision.
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such toys these fluctuations should cancel. Indeed, in Fig B.3 we see that the mean of the mean

η-imbalances is consistent with zero for both the discrete look-up and the parameterized model.

The RMS of the means of the η-imbalance distributions should tell us the uncertainty on the

average recoil response due to finite Z statistics. We see that the RMS of the mean η-imbalances

over 1000 toys is the same for both the discrete and continuous recoil methods. This tells us that

both models describe the average recoil response function with equivalent statistical power.

It is not obvious that the uncertainty on the mean response should be the same for both

the parameterized and the binned method. Indeed, the Z recoil library is a special case. The

uncertainty on the mean response in the recoil model, is equivalent to the average uncertainty on

each bin, weighted by the frequency with which recoils are taken from that pT bin. Because the

Z and W boson have very similar pT spectra, the most frequently chosen W recoils correspond

to the bins with the most Z recoil data. In the toy simulations we generate identical pT spectra

for the Z and W boson. We find, that in toy studies where the pT distributions vary by large

amounts, the parameterized approach has a statistical advantage. This makes conceptual sense.

Imagine that the pT spectrum of the W boson was a delta function located at the tail of the Z

pT distribution. In such a situation, the error on the response using the binned approach would

be subject to the error corresponding to that one bin pT in the Z recoil file. In the continuous

case, some of the statistical power from lower in the Z pT distribution constrains the fit function

and reduces the error at the point in the tail. Thus, the continuity assumption would have an

advantage. Fortunately, this is not the case. In data, W and Z pT spectra differ only slightly.

When we model those differences in these toy studies, we find that the difference between the

parameterized and binned approaches is negligible. It would require differences in the pT spectra

much larger than those seen in data to even see a 10% advantage in the parameterized approach.

Given the similar transverse momentum profiles of the Z and W bosons, the effects of

bin-by-bin fluctuations in the Recoil Library Method show up, not in the precision of the mean

η-imbalance for a given toy, but in the RMS of the η-imbalance distributions. Figure B.5 shows

the histograms of the RMS’s of the 1000 η-imbalance distributions for the continuous and discrete
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models. The average RMS of the eta imbalance for a given toy W sample with recoil modeled

using a look-up table is roughly 170 MeV, whereas that of the parameterized model is merely 17

MeV. The effect of the bin-by-bin fluctuations is to degrade the effective hadronic resolution by

O(100) MeV.
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Figure B.4: The RMS’s of the of η-imbalance distributions for 1000 toy W sets, each generated

from and independent recoil histogram containing 18k events, and no hadronic resolution. The

solid line corresponds to the RMSs of the η-imbalance distributions where the recoil response was

modeled using linear fits to the recoil data (continuity assumption). The dashed line shows the

RMSs where the recoil response is chosen from the appropriate bin of the recoil histogram (discrete

case).Note that the average RMS of the η-imbalance distribution for the discrete look-up model is

10 times larger than that of the parameterized model.

So far, we have only examined the case where we do not apply any recoil resolution to the

toy W samples. This is technically an unfair situation, because the very fluctuations in the toy

recoil histograms come from an assumed hadronic resolution in the first place. Figure B.5 shows

the RMSs of 1000 η-imbalance distributions for the continuous (solid) and discretized (dashed)
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Figure B.5: The RMS’s of the of η-imbalance distributions for 1000 toy W sets, each generated

from and independent recoil histogram containing 18k events, and no hadronic resolution. The

solid line corresponds to the RMSs of the η-imbalance distributions where the recoil response

was modeled using linear fits to the recoil data (continuity assumption). The dashed line shows

the RMSs where the recoil response is chosen from the appropriate bin of the recoil histogram

(discrete case). Plot (a) shows the case where the hadronic sampling term is 0.4
√

GeV and plot

(b) corresponds to the case where the hadronic sampling term is 0.8
√

GeV. Note that as the

hadronic resolution gets progressively worse, differences in the RMSs of the η-imbalance between

the discrete and continuous model become negligible.
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standard recoil histogram (solid-line), and using recoil histograms with the bin-by-bin fluctuations

amplified 2 (dashed-line) and 3 (dotted-line) times. An 0.8
√

GeV hadronic resolution is applied.
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models at hadronic resolutions of 0.4
√

GeV and 0.8
√

GeV, respectively. When we do turn on

the full hadronic sampling resolution of 0.8
√

GeV, we see that the average RMS of a typical

η-imbalance distribution is around 2.137 GeV. The O(100) MeV oversmearing due to bin-by-bin

fluctuations in the recoil histogram becomes insignificant when combined in quadrature with a

finite resolution that is a full order of magnitude larger. We can also see this in Fig B.6 which

plots the transverse mass distribution with data-like resolution, made from a recoil histogram

with normal bin-by-bin fluctuations and ones with fluctuations 2 and 3 times larger than normal.

Unlike the case with Fig B.2, the oversmearing of the Jacobian edge is no longer clearly visible

by eye. Figure B.7 again shows the means of the 1000 η-imbalance distributions for the discrete

and continuous cases, this time with the resolution turned on. While the effects of bin-by-bin

fluctuations become insignificant at data-like resolutions, the statistical power of the 18k recoil

samples to describe the average recoil response remains the same for both recoil models as they

were when no resolution was applied.

We can summarize as follows. In the parameterized recoil file, statistical fluctuations in the

Z recoil sample show up as fluctuations in the fitted shape of the response curve. In the discrete

case, using a recoil library fluctuations in the Z sample show up in two ways: as fluctuations in the

mean response function over the whole look-up table, and bin-by-bin fluctuations around that mean

shape, which effectively oversmear the hadronic resolution. At realistic detector resolutions, the

hadronic oversmearing due to these bin-by-bin fluctuations becomes negligible, whereas fluctuations

in the mean recoil response remain. The statistical power of both methods to describe the mean

recoil response is equivalent because the pT distributions are the nearly the same for both bosons.

That being the case, we would expect equivalent errors for both methods due to the finite Z

sample. This is indeed what we observe.
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Figure B.7: The distribution of the means of η-imbalance distributions for 1000 toy W sets, each

generated from and independent recoil histogram containing 18k events, with a hadronic sampling

resolution of 0.8
√

GeV. Plot (a) shows the means of the η-imbalance distributions where the recoil

response was modeled using linear fits to the recoil data (continuity assumption). Plot (b) shows

the means where the recoil response is chosen from the appropriate bin of the recoil histogram

(discrete case). Note that the RMS values of these two distributions is the roughly the same as for

the case with no hadronic resolution. This tells us that fluctuations in the mean recoil response

are the same, regardless of whether additional hadronic smearing is applied.
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